How to Edit and fill out Mod Form 493 Online
Read the following instructions to use CocoDoc to start editing and drawing up your Mod Form 493:
- First of all, seek the “Get Form” button and press it.
- Wait until Mod Form 493 is appeared.
- Customize your document by using the toolbar on the top.
- Download your completed form and share it as you needed.
An Easy-to-Use Editing Tool for Modifying Mod Form 493 on Your Way


How to Edit Your PDF Mod Form 493 Online
Editing your form online is quite effortless. You don't need to download any software through your computer or phone to use this feature. CocoDoc offers an easy tool to edit your document directly through any web browser you use. The entire interface is well-organized.
Follow the step-by-step guide below to eidt your PDF files online:
- Search CocoDoc official website from any web browser of the device where you have your file.
- Seek the ‘Edit PDF Online’ option and press it.
- Then you will browse this page. Just drag and drop the template, or upload the file through the ‘Choose File’ option.
- Once the document is uploaded, you can edit it using the toolbar as you needed.
- When the modification is finished, press the ‘Download’ option to save the file.
How to Edit Mod Form 493 on Windows
Windows is the most widely-used operating system. However, Windows does not contain any default application that can directly edit template. In this case, you can download CocoDoc's desktop software for Windows, which can help you to work on documents easily.
All you have to do is follow the instructions below:
- Download CocoDoc software from your Windows Store.
- Open the software and then attach your PDF document.
- You can also attach the PDF file from Google Drive.
- After that, edit the document as you needed by using the varied tools on the top.
- Once done, you can now save the completed file to your cloud storage. You can also check more details about how do you edit a PDF file.
How to Edit Mod Form 493 on Mac
macOS comes with a default feature - Preview, to open PDF files. Although Mac users can view PDF files and even mark text on it, it does not support editing. Using CocoDoc, you can edit your document on Mac directly.
Follow the effortless instructions below to start editing:
- To get started, install CocoDoc desktop app on your Mac computer.
- Then, attach your PDF file through the app.
- You can select the template from any cloud storage, such as Dropbox, Google Drive, or OneDrive.
- Edit, fill and sign your file by utilizing this tool developed by CocoDoc.
- Lastly, download the template to save it on your device.
How to Edit PDF Mod Form 493 with G Suite
G Suite is a widely-used Google's suite of intelligent apps, which is designed to make your job easier and increase collaboration across departments. Integrating CocoDoc's PDF file editor with G Suite can help to accomplish work easily.
Here are the instructions to do it:
- Open Google WorkPlace Marketplace on your laptop.
- Search for CocoDoc PDF Editor and download the add-on.
- Select the template that you want to edit and find CocoDoc PDF Editor by selecting "Open with" in Drive.
- Edit and sign your file using the toolbar.
- Save the completed PDF file on your cloud storage.
PDF Editor FAQ
What will be the remainder when 23^460 + 52^493 is divided by 11?
[math]\begin {align} (a [/math][math][/math][math]+ b) \[/math][math]mod[/math][math] c &= (a \[/math][math]mod[/math][math] c [/math][math][/math][math]+ b \[/math][math]mod[/math][math] c) \[/math][math]mod[/math][math] c [/math][math][/math][math]\\ (23^{460} [/math][math][/math][math]+ 52^{493}) \[/math][math]mod[/math][math] 11 &= (23^{460} \[/math][math]mod[/math][math] 11 [/math][math][/math][math]\, [/math][math][/math][math]+ \nonumber [/math][math][/math][math]\\ &\qquad [/math][math][/math][math]{} 52^{493} \[/math][math]mod[/math][math] 11) \[/math][math]mod[/math][math] 11 [/math][math][/math][math]\, [/math][math][/math][math]\, \cdots(1) \end{align}[/math]Let us evaluate each term one by one and then substitute back to arrive at the solution.[math]23^{460} \equiv 1^{460} \[/math][math]mod[/math][math] 11 = 1 [/math][math][/math][math]\, [/math][math][/math][math]\, \cdots (2) [/math][math][/math][math][/math][math]52^{493} \equiv 8^{493} \[/math][math]mod[/math][math] 11 [/math][math][/math][math][/math]Now we have to compute [math]8^{493} \[/math][math]mod[/math][math] 11[/math]Using Euler's theorem, we have,[math]8^{10} \[/math][math]mod[/math][math] 11 = 1[/math]Also, [math]8^{490} \[/math][math]mod[/math][math] 11 = 1 [/math][math][/math][math][/math]Therefore, [math]8^{493} \equiv 8^3 \[/math][math]mod[/math][math] 11 [/math][math][/math][math][/math][math]8^{493} \equiv 512 \[/math][math]mod[/math][math] 11[/math][math]512 \[/math][math]mod[/math][math] 11 = 6 [/math][math][/math][math]\, [/math][math][/math][math]\, \cdots (3)[/math]Using [math](2)[/math] and [math](3)[/math] in [math](1)[/math], we get,[math](23^{460} [/math][math][/math][math]+ 52^{493}) \[/math][math]mod[/math][math] 11 = (1 [/math][math][/math][math]+ 6) \[/math][math]mod[/math][math] 11[/math][math](23^{460} [/math][math][/math][math]+ 52^{493}) \[/math][math]mod[/math][math] 11 = 7 \[/math][math]mod[/math][math] 11[/math]Hence the remainder is [math]7[/math].A quick check on Wolfram Alpha verifies my answer.The above screenshot is taken from: Wolfram|Alpha: Making the world’s knowledge computable
Trigonometry (mathematics): How can I get a Pythagorean triple from a given hypotenuse (if it exists)?
Note that every integral primitive Pythagorean triple is generated by the following equations:[math]a=m^2-n^2[/math][math]b=2mn[/math][math]c=m^2+n^2[/math][math]a,b,c[/math] are taken to be the length of the two legs and hypotenuse respectively and [math]m,n [/math][math][/math][math][/math] are arbitrary integers.Given a certain value of [math]c [/math][math][/math][math][/math], we can find [math]m,n [/math][math][/math][math][/math] that satisfy [math]c=m^2+n^2[/math] if and only if the squarefree part of [math]c[/math] is congruent to [math]1[/math] mod [math]4[/math] by Fermat's two square theorem.It is a nontrivial task to actually find [math]c [/math][math][/math][math][/math] as the sum of two squares. A simple way to do this is to take the squarefree part of [math]c[/math] and split it into primes. We can then write these primes as the sum of two squares or look them up in a table. Then we can use an identity of Euler to write the product of the sum of two squares as the sum of two squares:[math](a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2 [/math][math][/math][math][/math]There are probably more efficient ways to find [math]m,n[/math] such that [math]m^2+n^2=c[/math]. At any rate, once [math]m,n[/math] are found, we can plug them into the first equations to find [math]a,b[/math].If that explanation was a bit dense, the following example may help:Consider:[math]c=493[/math][math]493=17 \times 29[/math][math]17=4^2+1^2[/math][math]29=2^2+5^2[/math][math]17\times 29=(8-5)^2+(20+2)^2=3^2+22^2=484+9=493[/math]So we can say that [math]m=22, n=3[/math]. We find that:[math]a=22^2-3^2=475[/math][math]b=132[/math][math](475,132,493)[/math] is therefore a Pythagorean triple.Let's confirm:[math]475^2+132^2=225625+17424=243049=493^2 [/math][math][/math][math][/math]Yup. A Pythagorean triple.
A whole number n, when divided by 11, the remainder is 9; when divided by 5, the remainder is 3; when divided by 3, the remainder is 1. how many different numbers can n be if 0<n<500?
[math]n=11q+9[/math][math]11q+9\equiv 3\,(mod\,5)[/math][math]11q\equiv 4\,(mod\,5)[/math][math]q\equiv 4\,(mod\,5)[/math][math]q=5r+4[/math][math]n=11(5r+4)+9[/math][math]n=55r+53[/math][math]55r+53\equiv 1\,(mod\,3)[/math][math]55r\equiv 2\,(mod\,3)[/math][math]r\equiv 2\,(mod\,3)[/math][math]n=55(2)+53=163[/math][math]n=163+(11)(5)(3)s[/math][math]n=163+165s[/math]For [math]0\leq n \leq 500[/math], there are [math]3[/math] numbers:[math]n=163[/math], [math]n=328[/math], [math]n=493[/math]
- Home >
- Catalog >
- Life >
- Medical Forms >
- Against Medical Advice Form >
- Against Medical Advice Ama Form >
- signing out against medical advice >
- Mod Form 493