R , 1 F&Quot: Fill & Download for Free

GET FORM

Download the form

The Guide of finishing R , 1 F&Quot Online

If you are looking about Tailorize and create a R , 1 F&Quot, here are the step-by-step guide you need to follow:

  • Hit the "Get Form" Button on this page.
  • Wait in a petient way for the upload of your R , 1 F&Quot.
  • You can erase, text, sign or highlight through your choice.
  • Click "Download" to download the forms.
Get Form

Download the form

A Revolutionary Tool to Edit and Create R , 1 F&Quot

Edit or Convert Your R , 1 F&Quot in Minutes

Get Form

Download the form

How to Easily Edit R , 1 F&Quot Online

CocoDoc has made it easier for people to Fill their important documents via online website. They can easily Tailorize through their choices. To know the process of editing PDF document or application across the online platform, you need to follow these steps:

  • Open CocoDoc's website on their device's browser.
  • Hit "Edit PDF Online" button and Import the PDF file from the device without even logging in through an account.
  • Edit the PDF for free by using this toolbar.
  • Once done, they can save the document from the platform.
  • Once the document is edited using online browser, the user can easily export the document of your choice. CocoDoc ensures that you are provided with the best environment for implementing the PDF documents.

How to Edit and Download R , 1 F&Quot on Windows

Windows users are very common throughout the world. They have met millions of applications that have offered them services in managing PDF documents. However, they have always missed an important feature within these applications. CocoDoc are willing to offer Windows users the ultimate experience of editing their documents across their online interface.

The way of editing a PDF document with CocoDoc is simple. You need to follow these steps.

  • Pick and Install CocoDoc from your Windows Store.
  • Open the software to Select the PDF file from your Windows device and go ahead editing the document.
  • Fill the PDF file with the appropriate toolkit appeared at CocoDoc.
  • Over completion, Hit "Download" to conserve the changes.

A Guide of Editing R , 1 F&Quot on Mac

CocoDoc has brought an impressive solution for people who own a Mac. It has allowed them to have their documents edited quickly. Mac users can fill PDF forms with the help of the online platform provided by CocoDoc.

To understand the process of editing a form with CocoDoc, you should look across the steps presented as follows:

  • Install CocoDoc on you Mac in the beginning.
  • Once the tool is opened, the user can upload their PDF file from the Mac quickly.
  • Drag and Drop the file, or choose file by mouse-clicking "Choose File" button and start editing.
  • save the file on your device.

Mac users can export their resulting files in various ways. Not only downloading and adding to cloud storage, but also sharing via email are also allowed by using CocoDoc.. They are provided with the opportunity of editting file through various ways without downloading any tool within their device.

A Guide of Editing R , 1 F&Quot on G Suite

Google Workplace is a powerful platform that has connected officials of a single workplace in a unique manner. If users want to share file across the platform, they are interconnected in covering all major tasks that can be carried out within a physical workplace.

follow the steps to eidt R , 1 F&Quot on G Suite

  • move toward Google Workspace Marketplace and Install CocoDoc add-on.
  • Attach the file and Press "Open with" in Google Drive.
  • Moving forward to edit the document with the CocoDoc present in the PDF editing window.
  • When the file is edited ultimately, share it through the platform.

PDF Editor FAQ

What is [math]1\times 2+2\times 3+3\times4+\cdots +n\times (n+1)[/math]?

Consider the function [math]f:\mathbb{Z}\to\mathbb{Z}[/math] defined by [math]f(n)=n(n-1)(n+1).[/math]If we evaluate [math]f(r+1)-f(r)[/math], then we obtain:[math](r+1)r(r+2)-r(r-1)(r+1)=r(r+1)((r+2)-(r-1))=3r(r+1).[/math]Hence[math]f(r+1)-f(r)=3r(r+1).[/math]Thus[math](f(1)-f(0))+(f(2)-f(1))+(f(3)-f(2))+\cdots+(f(n+1)-f(n))[/math][math]=3(0)(1)+3(1)(2)+3(2)(3)+\cdots+3n(n+1).[/math][math]f(n+1)-f(0)=3(1\times 2+2\times 3+\cdots+n(n+1)).[/math][math](n+1)(n)(n+2)=3(1\times 2+2\times 3+\cdots+n(n+1)).[/math][math]1\times 2+2\times 3+\cdots+n(n+1)=\dfrac{n(n+1)(n+2)}{3}.[/math]

Suppose a function f:R→R satisfies f(100) ≠0, f (x^2-y^2) =f(x) ^2-f(y) ^2 for all x,y. What is the value of f (2019)?

I am not so experienced in these questions but I will give it a tryFirst of all if we plug in [math][/math][math]\ [/math][math][/math][math]\ x=y=0\ [/math][math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math] [/math][math][/math][math][/math]we get[math]f(0^2–0^2)=f^2(0)-f^2(0)\iff \boxed {f(0)=0}[/math]Then for plug in [math][/math][math]\ [/math][math][/math][math]\ y=0\ [/math][math][/math][math]\ [/math][math][/math][math] [/math][math][/math][math][/math]and[math]f(x^2–0^2)=f^2(x)-f^2(0)\iff \boxed {f(x^2)=f^2(x)}[/math]We can also notice that[math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math]f[/math][math] [/math][math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] [/math][math][/math][math][/math]is odd plugging in [math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ x=0 [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math][/math]because[math]f(0^2–y^2)=f^2(0)-f^2(y)\iff [/math][math][/math][math][/math][math]f(–y^2)=-f^2(y)\iff[/math][math]f(–y^2)=-f(y^2)\iff[/math][math]f(–t)=-f(t)\implies [/math][math][/math][math] [/math][math][/math][math] [/math][math]f[/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math][/math]is odd (actually we don’t need this in order to answer the question but it is good to know anyway)Now lets go for [math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] f(1) [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math][/math]plugging in[math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] x=1 [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] and [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] [/math][math][/math][math] y=0 [/math][math][/math][math][/math][math]f(1^2–0^2)=f^2(1)-f^2(0)\iff [/math][math][/math][math][/math][math]f(1)=f^2(1)\iff [/math][math][/math][math][/math][math]f^2(1)-f(1)=0\iff [/math][math][/math][math][/math][math]f(1)[f(1)-1]=0\iff [/math][math][/math][math][/math][math]f(1)=0 [/math][math][/math][math]\ \text{ or} [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] f(1)=1[/math]but[math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] f(1)\neq 0[/math](Look at this beautiful explanation of [math][/math][math]\ [/math][math][/math][math]\ f(1)\neq 0\ [/math][math][/math][math]\ [/math][math][/math][math][/math] which made me adopt it and delete my explanation and make a link to this [1][1][1][1]!)Using David Shaffer's explanation[math]\boxed {x=\sqrt{z},y=1 \implies [/math][math][/math][math]\\ f(z-1)=f^2(\sqrt{z})-f^2(1)=f((\sqrt z)^2)-f(1^2)=f(z)-f(1)\\ [/math][math][/math][math]\ \text {So}\ [/math][math][/math][math]\ [/math][math][/math][math] f(z)=f(z-1)+f(1)\\ \text{Summing from} [/math][math][/math][math]\ [/math][math][/math][math]\ z=1 [/math][math][/math][math]\ [/math][math][/math][math]\ \text{to} [/math][math][/math][math]\ [/math][math][/math][math]\ z=100 \text{ [/math][math][/math][math] and cancelling the common terms:}\\f(100)=f(0)+100f(1)\\ f(100)=100f(1)\\ \text{We are given} [/math][math][/math][math]\ [/math][math][/math][math]\ f(100)\ne 0 [/math][math][/math][math]\ [/math][math][/math][math]\ \text {so} [/math][math][/math][math]\ [/math][math][/math][math]\ f(1) \ne 0}[/math]so[math]\boxed [/math][math][/math][math]{ f(1)=1 [/math][math][/math][math]}[/math]now lets plug in[math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] x=\sqrt{t+1} [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math] [/math][math][/math][math][/math]and [math][/math][math]\ [/math][math][/math][math]\ y =\sqrt{ t [/math][math][/math][math]}[/math][math]f((\sqrt{t+1})^2 -(\sqrt{ t })^2)=f^2(\sqrt{t+1})-f^2(\sqrt{t})\iff [/math][math][/math][math][/math][math]f(t+1 - t )=f((\sqrt{t+1})^2)-f((\sqrt{t})^2)\iff [/math][math][/math][math][/math][math]f(1 [/math][math][/math][math] )=f(t+1)-f(t)\iff[/math][math][/math][math] f(t+1)-f(t)=1 [/math][math][/math][math] \iff[/math][math]\boxed {f(t+1)=f(t)+1} [/math][math][/math][math] [/math][math][/math][math][/math]but then since we know now that [math][/math][math]\ [/math][math][/math][math]\ f(0)=0[/math]we get[math]f(1)=f(0+1)=f(0)+1=0+1=1[/math][math]f(2)=f(1+1)=f(1)+1=1+1=2[/math]and generallyif[math][/math][math] [/math][math][/math][math] [/math][math][/math][math]\ [/math][math][/math][math]\ f(n)=n [/math][math][/math][math]\ [/math][math][/math][math]\ [/math][math][/math][math][/math]then[math]f(n+1)=f(n)+1=n+1 [/math][math][/math][math][/math]So[math]\forall [/math][math][/math][math]\ x \in \N, [/math][math][/math][math] f(x)=x [/math][math][/math][math] [/math][math][/math][math][/math]which is what we need to know to figure out that[math][/math][math] [/math][math][/math][math] \boxed [/math][math][/math][math]{ [/math][math][/math][math]\ [/math][math][/math][math]\ f(2019)=2019\ [/math][math][/math][math]\ [/math][math][/math][math] [/math][math][/math][math]}[/math]Footnotes[1] David Shaffer's answer to Suppose a function f:R→R satisfies f(100) ≠0, f (x^2-y^2) =f(x) ^2-f(y) ^2 for all x,y. What is the value of f (2019)?[1] David Shaffer's answer to Suppose a function f:R→R satisfies f(100) ≠0, f (x^2-y^2) =f(x) ^2-f(y) ^2 for all x,y. What is the value of f (2019)?[1] David Shaffer's answer to Suppose a function f:R→R satisfies f(100) ≠0, f (x^2-y^2) =f(x) ^2-f(y) ^2 for all x,y. What is the value of f (2019)?[1] David Shaffer's answer to Suppose a function f:R→R satisfies f(100) ≠0, f (x^2-y^2) =f(x) ^2-f(y) ^2 for all x,y. What is the value of f (2019)?

How do I solve [math]f[/math][math] (x [/math][math][/math][math]+ [/math][math]f[/math][math] (x [/math][math][/math][math]+ y)) [/math][math][/math][math]+ f(xy) = x [/math][math][/math][math]+ [/math][math]f[/math][math] (x [/math][math][/math][math]+ y) [/math][math][/math][math]+ yf(x)[/math] for all [math]f:\mathbf R\to\mathbf [/math][math]R[/math][math][/math]?

This question is a bit old, but I noticed all the other solutions have flaws in them, so I felt obligated to solve it myself. I encourage you to try and find the mistake in the other proofs. It’s a mistake made by at least 95% of people when they first get into functional equations, so it you can identify it, then you’re on the right track!If however you’re feeling lazy, I can convince you that their solutions is wrong:Proof 1: This problem is P5 from the International Mathematical Olympiad 2015, so it is extremely unlikely that it can be solved in a few lines.Convinced? No? Okay how about this:Proof 2: [math]f(x)=2-x[/math] is a solution ( you can check) but none of the other answers included it, so they must have a flaw.Now that we got that out of the way, let’s do some substitutions, and what better place to start than [math]0[/math].for [math]y=0[/math] :[math]f(x+f(x))=x+f(x) - f(0) \tag{1}[/math]for [math]x=0[/math]:[math]f(f(y))+f(0)=f(y)+yf(0) \tag{2}[/math]for [math]y=1[/math] :[math]f(x+f(x+1)) =x+f(x+1)\tag{3}[/math]Now substitute [math]y=x+f(x+1)[/math] in [math](2)[/math] (keeping in mind that [math]y=f(y)=f(f(y))[/math]) we get :[math]f(0)=yf(0)\tag*{}[/math]This could mean two things:If [math]f(0) \neq 0[/math] then [math]y=1 \Leftrightarrow x+f(x+1)=1 \Leftrightarrow f(x+1)=1-x[/math] setting [math]z =x+1[/math] gives us the possible solution [math]f(z)=2-z[/math].If [math]f(0)=0[/math], then we [math](1)[/math] and [math](2)[/math] can be simplified so we get:[math]f(x+f(x))=x+f(x)\tag{4}[/math]and :[math]f((y))=f(y)\tag{5}[/math]You should be convinced that the only solution in this case is the identity. How do we show that? Well, since we know[math][/math][math] f(f(y))=f(y)[/math] it suffices to show that [math]f[/math][math][/math] is surjective or injective. Judging by the equation we have, proving surjectivity seems unlikely but injectivity seems promising…*[math]30[/math] minutes later*%$^# this. Okay maybe it wasn’t that promising. We need to go another route.What do we do? Well, we know that [math]f(0)=0[/math]. so we can make use of it by setting [math]y=-x[/math] in our original equation :[math]f(x+f(0)) [/math][math][/math][math]+ f(-x^2)=x+f(0)-xf(x) \tag*{}[/math][math]\Leftrightarrow f(-x^2)=x -(x+1)f(x)\tag{6}[/math]Interesting, I can use this to figure out [math]f(-1)[/math] by plugging in [math]x=-1[/math], which would yield [math]f(-1)=-1[/math] but then I can set [math]x=1[/math] (in the same equation) and get that [math]f(1)=1[/math]. Good Stuff. More importantly though, LHS of [math](6)[/math] does not change if I replace [math]x[/math] with [math]-x[/math], so same should apply for RHS. Concretely this means that:[math]x-(x+1)f(x)=f(-x^2)=-x-(-x+1)f(-x) \tag{7}[/math]Hmmm.. We know that [math]f[/math][math][/math] is probably the identity, so it should be an odd function, if I can prove that, and replace [math]f(-x)[/math] with [math]-f(x)[/math] in [math](7)[/math] then I would get an equation involving only [math]f(x)[/math] and [math]x[/math], and would be able to determine the function.Objective: Prove that [math]f[/math][math][/math] is an odd function.To do this, I want to make a substitution that would make [math]x[/math] and [math]-x[/math] appear in my equation, and since I already tried [math]y=-x[/math], let’s try something else now, how about [math]y=-1 [/math][math][/math][math][/math]:[math]f(x+f(x-1))+f(-x)=x+f(x-1) -f(x)\tag*{}[/math]Now if only I had [math]f(x+f(x-1))=x+f(x-1)[/math] , then we’d be done! Can we show that? i.e. can we prove that [math]x+f(x-1)[/math] is a fixed point? This seems feasible for the following reason: if I let [math]S[/math] be the set of points fixed by [math]f[/math][math][/math] then we know that [math]-1,0,1, f(x),x+f(x),x+f(x+1)[/math] are all elements of [math]S,[/math] so we already have some idea about the structure of the set.Turns out, all we need is this one magical substitution to finish up the problem:Let [math]x=1[/math] and [math]y=z-2 [/math][math][/math][math]+ f(z-1)=z-2 [/math][math][/math][math]+ f((z-2)+1)[/math] (and note that by [math](3)[/math], [math]y\in S[/math]) We get the following:[math]f(1+f(y+1)) [/math][math][/math][math]+ f(y)=1+f(y+1)+y\tag*{} [/math][math][/math][math][/math][math]\Leftrightarrow f(1+f(y+1))=1+f(y+1) \tag*{}[/math]so [math]1+f(y+1)[/math] is a fixed point, replacing [math]y[/math] by its value we get:[math]1+f(y+1)=1+f(z-1+f(z-1))= z+f(z-1)\tag*{}[/math]This is precisely want we wanted to show! So we conclude that [math]f[/math][math][/math] is odd.Replacing [math]f(-x)[/math] by [math]-f(x)[/math] in [math](7)[/math] we get :[math]x-(x+1)f(x)=-x-(x-1)f(x) \Leftrightarrow f(x)=x [/math][math][/math][math][/math]Finally, we can easily verify that [math]f(x)=x[/math] and [math]f(x)=2-x[/math] indeed satisfy the given equation.[math][/math][math] \blacksquare[/math]

Why Do Our Customer Attach Us

1) Takes no time to use it 2) Reliable & safe 3) visible signing by all parties

Justin Miller