How to Edit Your O1ce Online Lightning Fast
Follow the step-by-step guide to get your O1ce edited for the perfect workflow:
- Hit the Get Form button on this page.
- You will go to our PDF editor.
- Make some changes to your document, like signing, highlighting, and other tools in the top toolbar.
- Hit the Download button and download your all-set document into you local computer.
We Are Proud of Letting You Edit O1ce super easily and quickly


How to Edit Your O1ce Online
If you need to sign a document, you may need to add text, Add the date, and do other editing. CocoDoc makes it very easy to edit your form into a form. Let's see how can you do this.
- Hit the Get Form button on this page.
- You will go to CocoDoc PDF editor page.
- When the editor appears, click the tool icon in the top toolbar to edit your form, like checking and highlighting.
- To add date, click the Date icon, hold and drag the generated date to the target place.
- Change the default date by changing the default to another date in the box.
- Click OK to save your edits and click the Download button for the different purpose.
How to Edit Text for Your O1ce with Adobe DC on Windows
Adobe DC on Windows is a useful tool to edit your file on a PC. This is especially useful when you prefer to do work about file edit in the offline mode. So, let'get started.
- Click the Adobe DC app on Windows.
- Find and click the Edit PDF tool.
- Click the Select a File button and select a file from you computer.
- Click a text box to change the text font, size, and other formats.
- Select File > Save or File > Save As to confirm the edit to your O1ce.
How to Edit Your O1ce With Adobe Dc on Mac
- Select a file on you computer and Open it with the Adobe DC for Mac.
- Navigate to and click Edit PDF from the right position.
- Edit your form as needed by selecting the tool from the top toolbar.
- Click the Fill & Sign tool and select the Sign icon in the top toolbar to customize your signature in different ways.
- Select File > Save to save the changed file.
How to Edit your O1ce from G Suite with CocoDoc
Like using G Suite for your work to complete a form? You can do PDF editing in Google Drive with CocoDoc, so you can fill out your PDF to get job done in a minute.
- Go to Google Workspace Marketplace, search and install CocoDoc for Google Drive add-on.
- Go to the Drive, find and right click the form and select Open With.
- Select the CocoDoc PDF option, and allow your Google account to integrate into CocoDoc in the popup windows.
- Choose the PDF Editor option to open the CocoDoc PDF editor.
- Click the tool in the top toolbar to edit your O1ce on the specified place, like signing and adding text.
- Click the Download button to save your form.
PDF Editor FAQ
If a circle is enclosed by a sector and A, B and C are touching the circle, what is the ratio between the area of sector and area of circle?
See the figure below:Let the radius of the smaller circle be r.I will try to find out the radius of the bigger circle in terms of r.Then we are done.We can say from the figure that radius of bigger circle = OC.For this, we first need to prove that O, O1 and C are col-linear points.This can be proved if we can prove that:[math]\angle AO1O [/math][math][/math][math]+ \angle AO1C = 180^\circ [/math][math][/math][math]\\ From [/math][math][/math][math]\ right [/math][math][/math][math]\ angled [/math][math][/math][math]\ \bigtriangleup O1AO, [/math][math][/math][math]\\ [/math][math][/math][math]\ we [/math][math][/math][math]\ have \angle AO1O = 60^\circ. [/math][math][/math][math]\\ Now [/math][math][/math][math]\ concentrate [/math][math][/math][math]\ on\ \bigtriangleup AO1D. [/math][math][/math][math]\\ Its [/math][math][/math][math]\ a [/math][math][/math][math]\ isosceles [/math][math][/math][math]\ triangle. [/math][math][/math][math]\\ Since [/math][math][/math][math]\ AO1 = AO1 = r. [/math][math][/math][math]\\ Hence [/math][math][/math][math]\ \angle AD1O = \frac{(180 - \angle AO1D)}{2} [/math][math][/math][math]\\ = \frac{(180 - 60)}{2} = 60 [/math][math][/math][math]\\ [/math][math][/math][math] The [/math][math][/math][math]\ chord [/math][math][/math][math]\ AC [/math][math][/math][math]\ subtends [/math][math][/math][math]\ 60^\circ [/math][math][/math][math]. [/math][math][/math][math]\\ SO [/math][math][/math][math]\ it\ will [/math][math][/math][math]\ subtend [/math][math][/math][math]\ an [/math][math][/math][math]\ angle [/math][math][/math][math]\ of [/math][math][/math][math]\ 2*60^\circ [/math][math][/math][math]\ at [/math][math][/math][math]\ center. [/math][math][/math][math]\\ Hence [/math][math][/math][math]\ \angle AO1C = 120^\circ. [/math][math][/math][math]\\ So [/math][math][/math][math]\ we [/math][math][/math][math]\ have [/math][math][/math][math]\ [/math][math][/math][math]: [/math][math][/math][math]\\ \angle AO1O [/math][math][/math][math]+ \angle AO1C =\ 60^\circ [/math][math][/math][math]+ 120^\circ =\ 180^\circ [/math][math][/math][math]\\ \text{Hence the points O, O1 and C are col-linear.} [/math][math][/math][math]\\ So [/math][math][/math][math]\ radius [/math][math][/math][math]\ of [/math][math][/math][math]\ bigger [/math][math][/math][math]\ circle [/math][math][/math][math]\\ = OO1 [/math][math][/math][math]+ O1C. [/math][math][/math][math]\\ From [/math][math][/math][math]\ right [/math][math][/math][math]\ angled [/math][math][/math][math]\ \bigtriangleup AO1O, [/math][math][/math][math]\\ we [/math][math][/math][math]\ have: [/math][math][/math][math]\ \sin 30 = \frac{O1A}{O1O} [/math][math][/math][math]\\ => \sin 30 [/math][math][/math][math]\ = [/math][math][/math][math]\ \frac{r}{O1O} [/math][math][/math][math]\\ => O1O [/math][math][/math][math]\ = [/math][math][/math][math]\ \frac{r}{\sin 30} [/math][math][/math][math]\\ => O1O [/math][math][/math][math]\ = [/math][math][/math][math]\ 2r [/math][math][/math][math].\\ [/math][math][/math][math] Also\ O1C = r [/math][math][/math][math].\\ \text{So radius of bigger circle} = [/math][math][/math][math]\ OO1 [/math][math][/math][math]+ O1C = [/math][math][/math][math]\ 2r [/math][math][/math][math]+ r = 3r. [/math][math][/math][math]\\ [/math][math][/math][math] \frac{\text{Area of sector}}{Area of circle}\\ = \frac{\frac{\pi \cdot (3r)^2}{6}}{\pi\cdot r^2} [/math][math][/math][math]\\ [/math][math][/math][math] = \frac{3}{2}[/math]
What is the area of intersection of 2 circles of radius 5.5 cm whose centers are 6 cm apart?
For finding the area of the intersection of 2 circles, we may calculate the area of segment ABP & then double it, as the radius of both the circles are equal. Also O1O2 & AB will be perpendicular bisector of each other & AO1BO2 will be a rhombus.Since O1O2 = 6cm So, O1C = CO2 = 3cm angleSO1B= βNow, area of segment ABP = ar(sectorAO1BP) - ar( triangleAO1B)Area of sector = ( sector angle/ 360° ) pi r²Area of sector = (β/ 360°) (5.5)²pi ………….(1)Now area ( triangle O1BA) = .5*AB*3=> ar(tri O1BA) = 1.5AB = 1.5*2AC=> ar(tri O1 BA) = 1.5*2*√(5.5² -3²) = 3*8.5*2.5=> ar(triO1BA) = 63.75 ……….(2)Eq (1) - Eq(2) =Area of segment = [(β/360°) 30.25pi — 63.75]So, area of the intersection= 2* β/360° * 30.25pi - 63.75= [β/180° * 30.25pi - 63.75 ] cm² ………..ANS