How to Edit The Mod Form 134 quickly and easily Online
Start on editing, signing and sharing your Mod Form 134 online following these easy steps:
- Push the Get Form or Get Form Now button on the current page to access the PDF editor.
- Wait for a moment before the Mod Form 134 is loaded
- Use the tools in the top toolbar to edit the file, and the added content will be saved automatically
- Download your completed file.
The best-rated Tool to Edit and Sign the Mod Form 134


A quick guide on editing Mod Form 134 Online
It has become really simple lately to edit your PDF files online, and CocoDoc is the best online tool you have ever seen to make some changes to your file and save it. Follow our simple tutorial to start!
- Click the Get Form or Get Form Now button on the current page to start modifying your PDF
- Add, change or delete your text using the editing tools on the toolbar above.
- Affter altering your content, put the date on and create a signature to finish it.
- Go over it agian your form before you save and download it
How to add a signature on your Mod Form 134
Though most people are adapted to signing paper documents by handwriting, electronic signatures are becoming more general, follow these steps to add an online signature for free!
- Click the Get Form or Get Form Now button to begin editing on Mod Form 134 in CocoDoc PDF editor.
- Click on the Sign tool in the tool box on the top
- A window will pop up, click Add new signature button and you'll have three choices—Type, Draw, and Upload. Once you're done, click the Save button.
- Drag, resize and settle the signature inside your PDF file
How to add a textbox on your Mod Form 134
If you have the need to add a text box on your PDF and customize your own content, follow the guide to carry it throuth.
- Open the PDF file in CocoDoc PDF editor.
- Click Text Box on the top toolbar and move your mouse to position it wherever you want to put it.
- Write in the text you need to insert. After you’ve inserted the text, you can select it and click on the text editing tools to resize, color or bold the text.
- When you're done, click OK to save it. If you’re not happy with the text, click on the trash can icon to delete it and take up again.
A quick guide to Edit Your Mod Form 134 on G Suite
If you are looking about for a solution for PDF editing on G suite, CocoDoc PDF editor is a recommended tool that can be used directly from Google Drive to create or edit files.
- Find CocoDoc PDF editor and set up the add-on for google drive.
- Right-click on a PDF document in your Google Drive and choose Open With.
- Select CocoDoc PDF on the popup list to open your file with and give CocoDoc access to your google account.
- Modify PDF documents, adding text, images, editing existing text, mark with highlight, erase, or blackout texts in CocoDoc PDF editor before saving and downloading it.
PDF Editor FAQ
What is the multiplicative inverse of 4^67 (mod 19)?
From [math]19 \mid (2^{18}-1)=(2^9–1)(2^9+1)[/math], we know that [math]19 \mid (2^9–1)[/math] or [math]19 \mid (2^9+1)[/math]. We verify that [math]19 \mid (2^9+1)[/math].Now [math]4^{67} = 2^{134} = \big(2^9\big)^{15} \cdot 2^{-1} \equiv -2^{-1} \equiv -10 \equiv 9\pmod{19}[/math],and since [math]2 \cdot 9 \equiv -1\pmod{19}[/math], [math]9^{-1} \equiv -2 \equiv 17\pmod{19}[/math].Thus, [math]\big(4^{67}\big)^{-1} \equiv 17\pmod{19}[/math]. [math]\blacksquare[/math]
What's the remainder of [math]\frac{11^{99}+12^{99}+13^{99}+14^{99}+15^{99}}{196}[/math]?
This is answer avoids any computations that cannot be done in one’s head or relatively quickly on paper.First, it is crucial to recognize that [math]196[/math] is [math]14^2[/math]. This tells us that we can eliminate [math]14^{99}[/math] from our calculations, as [math]14^2[/math] divides into it, so it thus contributes no remainder.We then want to rewrite the expression as follows:[math](14-3)^{99}+(14-2)^{99}+(14-1)^{99}+(14+1)^{99} \[/math][math]mod[/math][math] 14^2[/math]This sets us up nicely to use the Binomial Theorem, which states:[math]\displaystyle (x+y)^n = \sum_{k=0}^{n} {{n}\choose{k}}x^ky^{n-k}[/math]In our case, if we were to expand each of the binomials of degree [math]99[/math] above, we realize that [math]14^2[/math] divides into every term that has a factor of [math]14^n, n\geq 2[/math]. Thus, we can eliminate every term from each binomial except for two:[math](14+x)^{99} \[/math][math]mod[/math][math] 14^2 [/math][math][/math][math][/math][math]\equiv {{99}\choose{1}}14^1x^{98}+{{99}\choose{0}}14^0x^{99} \[/math][math]mod[/math][math] 14^2[/math][math]= 99\cdot14x^{98}+x^{99} \[/math][math]mod[/math][math] 14^2[/math]Applying [math]x=-3,-2,-1,[/math] and [math]1[/math] leaves us with:[math]99\cdot14\cdot3^{98}\,-\,3^{99}\,+\,99\cdot14\cdot2^{98}\,-\,2^{99}+99\cdot14-1+99\cdot14+1 \[/math][math]mod[/math][math] 196[/math][math]99\cdot14[/math] is easy enough to calculate; it’s [math]100\cdot14-14=1386[/math]. So we have:[math]1386\cdot3^{98} - 3^{99} [/math][math][/math][math]+ 1386\cdot2^{98} - 2^{99} [/math][math][/math][math]+ 2\cdot1386 \[/math][math]mod[/math][math] 196[/math][math]= 462\cdot3^{99} - 3^{99} [/math][math][/math][math]+ 693\cdot2^{99} - 2^{99} [/math][math][/math][math]+ 2\cdot1386 \[/math][math]mod[/math][math] 196[/math][math]= 461\cdot3^{99} [/math][math][/math][math]+ 692\cdot2^{99} [/math][math][/math][math]+ 2\cdot1386 \[/math][math]mod[/math][math] 196[/math]Now we just need to find the remainder for each of the above terms.For term #1:[math]461\cdot3^{99} \[/math][math]mod[/math][math] 196[/math]Let’s look at [math]3^{99} \[/math][math]mod[/math][math] 196[/math]. It is helpful to split this up into (1) [math]3^{99} \[/math][math]mod[/math][math] 49[/math] and (2) [math]3^{99} \[/math][math]mod[/math][math] 4[/math]. (We must split [math]196[/math] into factors such that one factor is not a factor of the other factor; e.g. [math]28[/math] and [math]7[/math] may not work.)(1) [math]\pmod{49}[/math]:[math]3^{99} [/math][math][/math][math][/math][math]= 81\cdot3^{95} [/math][math][/math][math][/math][math]= 81\cdot243^{19} [/math][math][/math][math][/math][math]\equiv 81\cdot(-2)^{19} [/math][math][/math][math][/math][math]\equiv 32\cdot(-2)^{19} [/math][math][/math][math][/math][math]= -2^{24} [/math][math][/math][math][/math][math]= -256^3 [/math][math][/math][math][/math][math]\equiv -11^3 [/math][math][/math][math][/math][math]= -11\cdot121 [/math][math][/math][math][/math][math]\equiv -11\cdot23 [/math][math][/math][math][/math][math]= -253 [/math][math][/math][math][/math][math]\equiv -8 \equiv 41 \pmod{49}[/math](2) [math]\pmod{4}[/math]:[math]3^{99} [/math][math][/math][math][/math][math]\equiv (-1)^{99} [/math][math][/math][math][/math][math]\equiv 3 \pmod{4}[/math] (Much shorter!)So we need a number that has a remainder of [math]41[/math] when divided by [math]49[/math] and a remainder of [math]3[/math] when divided by [math]4[/math]. We try numbers satisfying the former until we satisfy both criteria:[math]41[/math] — no; [math]41 \equiv 1 \pmod{4}[/math][math]90[/math] — no; [math]90 \equiv 2 \pmod{4}[/math][math]139[/math] — Yes! [math]139 \equiv 3 \pmod{4}[/math]So we convert our original expression from [math]461\cdot3^{99} \[/math][math]mod[/math][math] 196[/math] to [math]461\cdot139 \[/math][math]mod[/math][math] 196[/math]. We proceed from here with [math]\[/math][math]mod[/math][math] 196[/math]:[math]461\cdot139 [/math][math][/math][math][/math][math]\equiv 69\cdot139 [/math][math][/math][math][/math][math]= 23\cdot417 [/math][math][/math][math][/math][math]\equiv 23\cdot25 [/math][math][/math][math][/math][math]= 23\cdot20+23\cdot5 [/math][math][/math][math][/math][math]= 460+115 [/math][math][/math][math][/math][math]\equiv 68+115 [/math][math][/math][math][/math][math]\equiv 183 \pmod{196}[/math]The remainder contributed by term 1 is thus [math]183[/math]. Whew. Onto term 2.For term #2:[math]692\cdot2^{99} \[/math][math]mod[/math][math] 196[/math]We look at [math]2^{99} \[/math][math]mod[/math][math] 196[/math] first. We again split this up into (1) [math]2^{99} \[/math][math]mod[/math][math] 49[/math] and (2) [math]2^{99} \[/math][math]mod[/math][math] 4[/math].(1) [math]\pmod{49}[/math]:[math]2^{99} [/math][math][/math][math][/math][math]= 8\cdot2^{96} [/math][math][/math][math][/math][math]= 8\cdot256^{12} [/math][math][/math][math][/math][math]\equiv 8\cdot11^{12} [/math][math][/math][math][/math][math]= 8\cdot121^6 [/math][math][/math][math][/math][math]\equiv 8\cdot23^6 [/math][math][/math][math][/math][math]= 8\cdot529^3 [/math][math][/math][math][/math][math]\equiv 8\cdot(-10)^3 [/math][math][/math][math][/math][math]= -800\cdot10 [/math][math][/math][math][/math][math]\equiv -16\cdot10 [/math][math][/math][math][/math][math]= -160 [/math][math][/math][math][/math][math]\equiv -13 \equiv 36 \pmod{49}[/math](2) [math]\pmod{4}[/math]:[math]2^{99} [/math][math][/math][math][/math][math]= 2\cdot2^{98} [/math][math][/math][math][/math][math]= 2\cdot4^{49} [/math][math][/math][math][/math][math]\equiv 2 \pmod{4}[/math] (Again, much shorter!)So we need a number that has a remainder of [math]36[/math] when divided by [math]49[/math] and a remainder of [math]2[/math] when divided by [math]4[/math]. We try numbers satisfying the former until we satisfy both criteria:[math]36[/math] — no; [math]36 \equiv 0 \pmod{4}[/math][math]85[/math] — no; [math]85 \equiv 1 \pmod{4}[/math][math]134[/math][math][/math] — Yes! [math]139 \equiv 2 \pmod{4}[/math]So we convert our original expression from [math]692\cdot2^{99} \[/math][math]mod[/math][math] 196[/math] to [math]692\cdot134 \[/math][math]mod[/math][math] 196[/math]. We proceed from here with [math]\[/math][math]mod[/math][math] 196[/math]:[math]692\cdot134 [/math][math][/math][math][/math][math]\equiv 104\cdot134 [/math][math][/math][math][/math][math]= 52\cdot268 [/math][math][/math][math][/math][math]\equiv 52\cdot72 [/math][math][/math][math][/math][math]= 208\cdot18 [/math][math][/math][math][/math][math]\equiv 12\cdot18 [/math][math][/math][math][/math][math]= 216 \equiv 20 \pmod{196}[/math]The remainder contributed by term 2 is thus 20.For term #3:I hope that at this point, you will be able to figure out for yourself that [math]2\cdot1386 \equiv 28 \pmod{196}[/math].Conclusion:We add all the remainders and divide by [math]196[/math].[math]183+20+28 = 231 \equiv \boxed{35 \pmod{196}}[/math]
What is an integer x from 0 to 10 such that x ≡ (134)^121 mod 11?
[math]134^{121}\equiv 2^{121} \pmod{11}[/math]Notice, [math]2^{10}=1024\equiv 1 \pmod{11}\implies 2^{121}=(2^{10})^{12}\cdot 2^1\equiv 1^{12}\cdot 2^1\equiv 2\pmod{11}[/math]
- Home >
- Catalog >
- Legal >
- Affidavit Form >
- Affidavit Of Support >
- Form I-134 Affidavit Of Support >
- i 134 form sample >
- Mod Form 134