Ct 1065: Fill & Download for Free

GET FORM

Download the form

The Guide of finalizing Ct 1065 Online

If you are curious about Alter and create a Ct 1065, here are the step-by-step guide you need to follow:

  • Hit the "Get Form" Button on this page.
  • Wait in a petient way for the upload of your Ct 1065.
  • You can erase, text, sign or highlight of your choice.
  • Click "Download" to download the forms.
Get Form

Download the form

A Revolutionary Tool to Edit and Create Ct 1065

Edit or Convert Your Ct 1065 in Minutes

Get Form

Download the form

How to Easily Edit Ct 1065 Online

CocoDoc has made it easier for people to Customize their important documents with online browser. They can easily Alter through their choices. To know the process of editing PDF document or application across the online platform, you need to follow these steps:

  • Open the official website of CocoDoc on their device's browser.
  • Hit "Edit PDF Online" button and Append the PDF file from the device without even logging in through an account.
  • Add text to your PDF by using this toolbar.
  • Once done, they can save the document from the platform.
  • Once the document is edited using online website, you can download or share the file according to your choice. CocoDoc ensures the high-security and smooth environment for carrying out the PDF documents.

How to Edit and Download Ct 1065 on Windows

Windows users are very common throughout the world. They have met millions of applications that have offered them services in editing PDF documents. However, they have always missed an important feature within these applications. CocoDoc are willing to offer Windows users the ultimate experience of editing their documents across their online interface.

The steps of modifying a PDF document with CocoDoc is very simple. You need to follow these steps.

  • Choose and Install CocoDoc from your Windows Store.
  • Open the software to Select the PDF file from your Windows device and move on editing the document.
  • Customize the PDF file with the appropriate toolkit appeared at CocoDoc.
  • Over completion, Hit "Download" to conserve the changes.

A Guide of Editing Ct 1065 on Mac

CocoDoc has brought an impressive solution for people who own a Mac. It has allowed them to have their documents edited quickly. Mac users can make a PDF fillable with the help of the online platform provided by CocoDoc.

In order to learn the process of editing form with CocoDoc, you should look across the steps presented as follows:

  • Install CocoDoc on you Mac firstly.
  • Once the tool is opened, the user can upload their PDF file from the Mac hasslefree.
  • Drag and Drop the file, or choose file by mouse-clicking "Choose File" button and start editing.
  • save the file on your device.

Mac users can export their resulting files in various ways. Not only downloading and adding to cloud storage, but also sharing via email are also allowed by using CocoDoc.. They are provided with the opportunity of editting file through various ways without downloading any tool within their device.

A Guide of Editing Ct 1065 on G Suite

Google Workplace is a powerful platform that has connected officials of a single workplace in a unique manner. When allowing users to share file across the platform, they are interconnected in covering all major tasks that can be carried out within a physical workplace.

follow the steps to eidt Ct 1065 on G Suite

  • move toward Google Workspace Marketplace and Install CocoDoc add-on.
  • Select the file and Hit "Open with" in Google Drive.
  • Moving forward to edit the document with the CocoDoc present in the PDF editing window.
  • When the file is edited completely, share it through the platform.

PDF Editor FAQ

What is Tarlov cyst disease?

Open main menuSearchEditWatch this pageRead in another languageTarlov cystPage issuesTarlov cysts, also known as perineural cysts,[1]are type II innervated meningeal cysts, cerebrospinal-fluid-filled (CSF) sacs most frequently located in the spinal canal of the S1-to-S5 region of the spinal cord (much less often in the cervical, thoracic or lumbar spine), and can be distinguished from other meningeal cysts by their nerve-fiber-filled walls. Tarlov cysts are defined as cysts formed within the nerve-root sheath at the dorsal root ganglion.[2]Since Tarlov cysts are cysts of the spinal meninges, symptomatic Tarlov cysts by definition cause myelopathy. The etiology of these cysts is not well understood; some current theories explaining this phenomenon have not yet been tested or challenged but include increased pressure in CSF, filling of congenital cysts with one-way valves, inflammation in response to trauma and disease. They are named for neurologist Isadore Tarlov, who described them in 1938.[3]Tarlov cystMRI image showing a Tarlov cyst.Classification and external resourcesICD-9-CM355.9DiseasesDB32082[edit on Wikidata]Tarlov cysts are relatively common when compared to other neurological cysts. Initially, Isadore Tarlov believed them to be asymptomatic, however as his research progressed, Tarlov found them to be symptomatic in a number of patients. These cysts are often detected incidentally during MRI or CT scans for other medical conditions. They are also observed using magnetic resonance neurography with communicating subarachnoid cysts of the spinal meninges. Cysts with diameters of 1 cm or larger are more likely to be symptomatic; although cysts of any size may be symptomatic dependent on location and etiology. Some 40% of patients with symptomatic Tarlov cysts can associate a history of trauma or childbirth.[4]Current treatment options include CSF aspiration, complete or partial removal, fibrin-glue therapy, laminectomy with wrapping of the cyst, amongst other surgical treatment approaches. Interventional treatment of Tarlov cysts is the only means by which symptoms might permanently be resolved due to the fact that the cysts often refill after aspiration. Tarlov cysts often enlarge over time, especially if the sac has a check valve type opening. They are differentiated from other meningeal and arachnoid cysts because they are innervated and diagnosis can in cases be demonstrated with subarachnoid communication.Tarlov perineural cysts have occasionally been observed in patients with Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome.[5]Signs and symptomsEditAppearanceEditWalls of Tarlov cysts are thin and fibrous; they are prone to rupture if touched, making surgery difficult. The nerve fibers embedded in the walls of the cysts have the appearance and size of dental floss; these nerve fibers are usually not arranged in any specific alignment.[6]Histologic examination reveals the Tarlov-cyst outer wall is composed of vascular connective tissue, and the inner wall is lined with flattened arachnoid tissue. In addition, part of the lining containing nerve fibers also occasionally contains ganglion cells.[7]The cysts can contain anywhere from a couple of milliliters of CSF to over 2.5 litres (0.5 imp gal; 0.7 US gal) of CSF.[6][8][9]LocationEditTarlov cysts are most commonly located in the S1 to S4/S5 region of the spinal canal, but can be found along any region of the spine. They usually form on the extradural components of sacrococcygeal nerve roots at the junction of dorsal root ganglion and posterior nerve roots and arise between the endoneurium and perineurium.[10]Occasionally, these cysts are observed in the lumbar and thoracic spine.[7]However, these cysts most commonly arise at the S2 or S3 junction of the dorsal nerve root ganglion.[11][12]The cysts are often multiple, extending around the circumference of the nerve, and can enlarge over time to compress neighboring nerve roots, to cause bone erosion.[13]The cysts may be found anterior to the sacral area and have been known to extend into the abdominal cavity. These cysts, though rare, can be found to grow large - over 3–4 centimetres (1.2–1.6 in) in size, often causing severe abdominal pain from compression on the cyst itself as well as adjoining nerves.Difference between Tarlov cysts and other spinal meningeal cystsEditThe following table is compilation of some key differences between Tarlov cysts, meningeal cysts, and arachnoid diverticula cysts.[14]Although the definitions for each entity are still controversial, the following items are generally accepted.Tarlov CystMeningeal Diverticula & Arachnoid DiverticulaPotential communication with spinal subarachnoid spaceCommunicates freely with spinal subarachnoid spaceDelayed filling in myelogramsRapid filling in myelogramsFound distal to the junction of posterior nerve root and dorsal root ganglion in sacral regionFound proximal to dorsal root ganglion throughout vertebral columnWalls contain nerve fibersWalls lined by arachnoid mater with no signs of neural elementOften multiple, extending around the circumference of nerve rootNo pattern of formation in regards to multiplicitySymptomsEditTarlov cysts are likely highly underdiagnosed as it was Isadore Tarlov's later research that led him to the understanding of their symptomology. Symptoms are based on the locations of the cysts along the spine, and follow general pathology of spinal injury:PainParesthesiaSpasticity, HypertoniaMuscular Dysfunction or WeaknessRadiculopathyAlthough they are most frequently reported along sacral regions, they are rarely seen in other locations along the spine.[15]Women are more likely to exhibit symptoms[16][17]They can also appear in clusters or bilaterally along the spine, thus symptoms can be unilateral, bilateral, or with symptoms more dominant on one side. The cases of reported symptomatic Tarlov cysts ranges from 15% to 30% of the overall reported Tarlov cyst case, depending on the source of literature. Nevertheless, these cysts are important clinical entities because of their tendency to increase in size over time, potentially causing complications and eroding the surrounding bone tissue.[11][13][18]Patients with symptomatic Tarlov cysts near the sacrum (and not other locations of the spine) can be divided into 4 categories, according to their experienced symptoms:[6]Group 1 - Pain on tailbones that radiates to the legs with potential weakness;Group 2 - Pain on bones, legs, groin area, sexual dysfunctions, and dysfunctional bladder;Group 3 - Pain that radiate from the cyst site across hips to the lower abdomen;Group 4 - No pain, just sexual dysfunction and dysfunctional bladder.Common symptoms specific to sacral Tarlov cystsEditBelow are a list of commonly reported symptoms associated with sacral Tarlov cysts:Back pain, perineal pain, secondary Sciatica, secondary piriformis muscle dysfunction with tertiary sciatica, Cauda equina syndrome, neurogenic claudication (pain caused by walking), neurogenic bladder, dysuria, urinary incontinence, coccygodynia, sacral radiculopathy, radicular pain, headaches, retrograde ejaculation, paresthesia, hypesthesia, secondary pelvic floor dysfunction, vaginismus, motor disorders in lower limbs and the genital, perineal, or lumbosacral areas, sacral or buttocks pain, vaginal or penile paraesthesia, sensory changes over buttocks, perineal area, and lower extremity;[11][7][13][19][20]difficulty walking; severe lower abdominal pain, bowel dysfunction, intestinal motility disorders like constipation or bowel incontinence.CauseEditFormationEditThere are several hypotheses proposed regarding the formation of Tarlov cysts, including: hemorrhagic infiltration of spinal tissue, inflammation within the nerve root cysts followed by inoculation of fluids, developmental or congenital origin, arachnoidal proliferation along and around the exiting sacral nerve root, and breakage of venous drainage in the perineuria and epineurium secondary to hemosiderin deposition after trauma.[10]Tarlov himself theorized that the perineural cysts form as a result of blockage of venous drainage in the perineurium and epineurium secondary to hemosiderin deposition, after local trauma.[13][21]Another theory gaining increasing popularity, over the past decade, is one postulated by Fortuna et al.; it described perineural cysts to be the results of congenitalarachnoidal proliferation along the exiting sacral nerve roots.[8]Some research on the migration of inflammatory cell into spinal has been studied. Additionally, in vivo and in vitro studies show inflammation induced by CNS injury causes distinct cystic cavitations created by astrocyte migration.[22]Hemorrhagic InfiltrationEditMany authors state that blood and its breakdown products acting as foreign-body substance in the subarachnoid space produce local adhesive arachnoiditis with no symptoms, but it also can create cystic degeneration. The subarachnoid space abhors all foreign body substances. Even the presence of injected air is considered to be a "foreign body". Blood definitely is considered a foreign body, particularly in its breakdown products. Repeated exposure to foreign body substances in the subarachnoid space can initiate auto-immune amnestic reactions which may potentiate and magnify the ongoing inflammatory process causing cystic cavitation in spinal tissue.EnlargementEditTarlov cysts are known to have the tendency to enlarge over time. The prominent theory that explains this phenomenon reasons the enlargement of the cysts is due to the cerebrospinal fluid being pushed into the cyst during systole pulsation, but unable to get out during the diastole phase, resulting in enlargement observed in clinical settings over time. Increased ICP from trauma or other injury, childbirth, and overextertion are thought to trigger enlargement along with inflammation and hemorrhagic infiltration. With the cysts often containing a valve like mechanism fluid becomes trapped, and the meningeal sac or nerve sheath grows in size. Some patients have been diagnosed for up to 20 years with little change in size, and those with small stable cysts may avoid much progression of symptoms. Those with generally larger sacral cysts pressed along the sacrum cause the sacrum to become eroded and thin.RuptureEditWhen Tarlov cysts are ruptured or drained they cause leakage of cerebrospinal fluid (CSF). Ruptures of Tarlov cysts have been reported associated with communicating aneurysms and from fracture in the proximity of the cysts.[23]An undetected rupture can cause intracranial hypotension, including orthostatic neurological symptoms along with headache, nausea, and vomiting that improve when supine. The ruptured cysts can be patched either with a biosynthetic dural patch or using a blood patch to stem the flow of CSF.DiagnosisEditTwo most commonly used and effective examination method for Tarlov Cysts are MRI and CT. Both CT and MRI are good imaging procedures that allow the detection of extradural spinal masses such as Tarlov cysts. Magnetic resonance neurography is an emerging imaging technology based on MRI that highlights neurologic tissue. Often cysts are under reported and under diagnosed as radiologists and neurosurgeons have been traditionally taught to ignore these cysts. Patients frequently experience difficulty in diagnosis, however this is changing as Tarlov cysts have now been recognized by NORD as a rare disease.[16]MRIEditMRI sagittal image of sacral and dorso-lumbar perineural cysts.MRI, or Magnetic Resonance Imaging, is considered the imaging study of choice in identifying Tarlov cysts. MRI provides better resolution of tissue density, absence of bone interference, multiplanar capabilities, and is noninvasive. Plain films may show bony erosion of the spinal canal or of the sacral foramina On MRI pictures, the signal is the same as the CSF one.If MRI made with a contrast medium:The signal in the cyst is the same as in the dural bag.The signal for cysts due to traumas…is a little stronger at the periphery or nerve root locationThe signal is more important for other causes: synovial cysts, dermoïdes or épidermoïdes cysts, teratomes[7][24][25]CTEditA computed tomography (CT) scan is another examination method often used for the diagnosis of Tarlov cyst. Unenhanced CT scans may show sacral erosion, asymmetric epidural fat distribution, and cystic masses that are have the same density with CSF.[7]CT Myelogram is minimally invasive,[26]and could be employed when MRI cannot be performed on patient.MisdiagnosisEditThe terms "Tarlov cyst" or "sacral perineural cyst" refer to cystic lesions of the spinal meninges with innervation as well as nerve sheath dilatations with subarchnoid communication. While they were once thought to be a histopathological finding,[10]they can be radiologically confirmed by specialized time lapsed MRI and CT imaging techniques showing subarchnoid communication from the nerve fibers in the cysts. They can also be surgically verified when the nerve fibers are visualized in the cystic sac. Often the cysts cause erosion from enlargement, damaging vertebrae and discs and can be misdiagnosed as primary stenosis or disc herniation.ClassificationEditTarlov cysts are considered Type II lesions, being defined as extradural meningeal cysts with nerve fibers.[14]Nabors et al. classify Arachnoïd cysts into three types:Type I : Extra-dural; no nerve roots or rootlets such as intra-sacral meningoceles; probably of congenital origin developing from the dural sac to which they are connected by a little collar. They are found at the point of exit of a dorsal nerve root from the dural sac. They are sometimes difficult to identify and can be "seen" as a type II cyst on imaging. These cysts are often associated with foramina enlargement and scalloping of the vertebrae. It is very important to distinguish them from sacral meningoceles going to the pelvic area; they are often associated with other congenital abnormalities (teratomes, dermoïdes, lipomes, and other abnormalities(uro-genital and ano-rectal))Type II: Extra-dural; nerve root present (such as Tarlov or perineural cysts). There are often not only one but multiple cysts, mostly found in the sacrum area. There are two types: Tarlov (perineural) cysts are located posteriorly to the root ganglion, with nerve fibres inside or nerve tissue in the walls; they are not communicating with the perineural arachnoid space. Type-II cysts are very small in the upper sacral area, but can be bigger (up to 3 centimetres or 1.2 inches) if found located in the lower part of the sacrum. The second variant of type-II cysts are called "meningeal diverticuli". They are located anteriorly to the nerve root ganglion, with nerves fibres inside and communicating with the subarachnoid space.Type III: intra-dural; these are either congenital or caused by trauma; they are rarely associated with other abnormalities and rare in occurrence. About 75% can be found in the dorsal area. Most of the congenital type-III cysts can be found posteriorly to the spinal cord, as opposed to those caused by trauma which can be found anteriorly to the spinal cord.[14][11]Post traumatic inflammation induces cavitation and cystic formation and leads to greater secondary CNS injury.[22] Cellular migration causing these cyst cavities was observed both in vitro and in vivo and cavitation was observed to be prevented with the use of an anti-inflammatory. Further more migration inflammatory cells into traumatized tissue has been observed with inflammation.TreatmentEditBecause of the unclear pathogenesis and pathophysiology of Tarlov cysts, there is no consensus on the optimal treatment of symptomatic sacral perineural cysts. Patients often choose to pursue treatment when the progression of neurological deficits seriously impacts their quality of life. Since cysts are innervated, microfenestration and surgical sleeving of the cysts to diminish the amount of accumulated cerebrospinal fluid and decrease compression of the spine and spinal nerves has been successful in a number of patients. The cysts are carefully separated enough from surrounding tissue to be wrapped with fatty tissue or pericardial biomaterial to excise the fluid from the cyst. If the cyst does not drain spontaneously, then it is drained and patched using a biosynthetic dural patch. The use of this technique is done in the U.S. and is spreading in Europe but recovery is generally extensive. Microfenestration alone has been done with some success in Asia. A biopolymer plate is also being used experimentally to strengthen a sacrum thinned by cystic erosion by Dr. Frank Feigenbaum. The risks of CSF leakage are higher on patients that have bilateral cysts on the same spinal level or clusters of cysts along multiple vertebrae, but immediate recognition of the leakage and repair can mitigate that risk.Various treatment methods have been tried in the past, including the extraction of cerebrospinal fluids from the cyst, fibrin glue injection and the complete or partial removal of cyst. Epidurals can provide temporary relief but are not generally recommended as they can cause cysts to enlarge. Extraction of fluid can provide limited or no relief depending on rate the cysts refill and the need to repeat the procedure. Removal of the cyst results in irreversible damage to the intersecting spinal nerve. Although fibrin-glue therapy initially had been thought to be a promising therapy in the treatment of these cysts, there have been multiple problems associated with the fibrin glue therapy including seepage of fibrin. It is no longer recommended for use at present by the Health Department in some countries and neurosurgeons previously performing the procedures. Nevertheless, all types of surgical treatment pose common risks, including neurological deficits, infection and inflammation, spinal headache, urinary disturbances, and leakage of cerebrospinal fluids.Here is an article for treatment of meningeal diverticulum. Feigenbaum F1, Henderson FC. Giant sacral meningeal diverticula: surgical implications of the "thecal tip" sign. Report of two cases. J Neurosurg Spine. 2006 Nov;5(5):443-6.ReferencesEdit^ Ju CI, Shin H, Kim SW, Kim HS (March 2009). "Sacral perineural cyst accompanying disc herniation". J Korean Neurosurg Soc. 45 (3): 185–7. doi:10.3340/jkns.2009.45.3.185. PMC 2666123 . PMID 19352483. Retrieved 2010-04-09.^ Goyal RN, Russell NA, Benoit BG, Belanger JM (1987). "Intraspinal cysts: a classification and literature review". Spine. 12: 209–213. doi:10.1097/00007632-198704000-00003.^ Kumar Singh Pankaj; Kumar Singh Vinay; Azam Amir; Gupta Sanjeev (2009). "Tarlov Cyst and Infertility". J Spinal Cord Med. 32 (2): 191–197. PMC 2678291 . PMID 19569467.^ Nishiura I, Koyama T, Handa J (1985). "Intrasacral perineural cyst". Surg Neurol. 23: 265–269. doi:10.1016/0090-3019(85)90093-x.^ Oaklander AL, Long DM, Larvie M, Davidson CJ (February 28, 2013). "Case 7-2013: A 77-year-old woman with long-standing unilateral thoracic pain and incontinence". New England Journal of Medicine. 368: 853–861. doi:10.1056/NEJMcpc1114034. PMID 23445097.^ a b c "Donlin Long., The Johns Hopkins Hospital Dept. of Neurosurgery, interviewed by Hsuan Chen, Oct. 6th, 2009."^ a b c d e Nadler S. F.; Bartoli L. M.; Stitik T. P.; Chen B. Q. (2001). "Tarlov cyst as a rare cause of S1 radiculopathy: A case report". Archives of Physical Medicine and Rehabilitation. 82 (5): 689–690. doi:10.1053/apmr.2001.22353.^ a b Tanaka M.; Nakahara S.; Ito Y.; Nakinishi K.; Sugimoto Y.; Ikuma H.; et al. (2006). "Surgical results of sacral perineural (Tarlov) cysts". Acta Medica Okayama. 60 (1): 65–70.^ Ishii K.; Yuzurihara M.; Asamoto S.; Doi H.; Kubota M. (2007). "A huge presacral Tarlov cyst - Case report". Journal of Neurosurgery-Spine. 7 (2): 259–263. doi:10.3171/spi-07/08/259.^ a b c Guo D. S.; Shu K.; Chen R. D.; Ke C. S.; Zhu Y. C.; Lei T. (2007). "Microsurgical treatment of symptomatic sacral perineural cysts". Neurosurgery. 60 (6): 1059–1065. doi:10.1227/01.neu.0000255457.12978.78.^ a b c d Singh P. K.; Singh V. K.; Azam A.; Gupta S. (2009). "Tarlov Cyst and Infertility". Journal of Spinal Cord Medicine. 32 (2): 191–197.^ Hefti M.; Landolt H. (2006). "Presacral mass consisting of a meningocele and a Tarlov cyst: successful surgical treatment based on pathogenic hypothesis". Acta Neurochirurgica. 148 (4): 479–483. doi:10.1007/s00701-005-0684-2.^ a b c d Tarlov I. M. (1970). "Spinal Perineural and Meningeal Cysts". J. Neurol. Neurosurg. Psychiat. 33: 10.^ a b c Nabors MW, Pait TG, Byrd EB, et al. (1988). "Updated Assessment and Current Classification of Spinal Meningeal cysts". J Neurosurg. 68: 366–377. doi:10.3171/jns.1988.68.3.0366.^ Kim K, Chun SW, Chung SG (Jan 2012). "A case of symptomatic cervical perineural (Tarlov) cyst: clinical manifestation and management". Skeletal Radiology. 41 (1): 97–101. doi:10.1007/s00256-011-1243-y. PMID 21830055.^ a b uri=https://rarediseases.org/rare-diseases/tarlov-cysts/ access date: September 17, 2015^uri=http://www.marianjoy.org/Research/documents/PDFs/2014/Dugan_TarlovCystsFinal2.20.pdf^ Tarlov I. M. (1953). "Sacral Nerve-Root Cysts- Pathogenesis and Clinical Significance". Journal of Nervous and Mental Disease. 117 (2): 3.^ Moldes M. R.; Rodriguez-Losada J. S.; Garcia D. L.; Agudo V. C.; Pais J. M. J.; Martin M. G. (2008). "Tarlov Cyst and Symptomatic Bladder Disfuction". Actas Urologicas Espanolas. 32 (10): 1035–1036. doi:10.1016/s0210-4806(08)73984-6.^ Feigenbaum F., Boone K. (Sep 3, 2015). "Persistent Genital Arousal Disorder Caused by Spinal Meningeal Cysts in the Sacrum: Successful Neurosurgical Treatment.". Obstetrics and Gynecology. 126: 839–43. doi:10.1097/AOG.0000000000001060. PMID 26348167.^ Zhang Tao; Li Zhenhua; Gong Weiming; Sun Bingwei; Liu Shuheng; Zhang Kai; Yin Dezhen; Xu Peng; Jia Tanghong (2007). "Percutaneous Fibrin Glue Therapy for Meningeal Cysts of the Sacral Spine with or without Aspiration of the Cerebrospinal Fluid". J Neurosur Spine. 7: 145–150. doi:10.3171/spi-07/08/145.^ a b Finch et al. (1999). "Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma". "Journal of Neuroscience". 19 (19): 8182–98.^ Sivakumar W, Ravindra VM, Cutler A, Couldwell WT. (Jun 2014). "Intracranial hypotension in the setting of concurrent perineural cyst rupture and subarachnoid hemorrhage.". Journal of Clinical Neuroscience. 21 (6): 1063–5. doi:10.1016/j.jocn.2013.10.011. PMID 24314847.^ From "Imagerie par Résonnance Magnétique de la Tête et du rachis" (Case 87,93), kystes méningés rachidiens, pages 684/685, Jean Claude Tamraz, C. Outin, M. Forjaz Secca - 2004, Medical - 717 pages: Springer Verlag.^ Principes d'imagerie par résonance magnétique de la tête, de la base du crâne et du rachis, Approche anatomo-clinique et guide d'interprétation, Tamraz, J., Outin, C., Forjaz Secca, M., Soussi, B., 2ieme ed. revue et augmentée, 2004, XII, 717 p., Broché, ISBN 978-2-287-59742-8.^ Lee J. Y.; Impekoven P.; Stenzel W.; Lohr M.; Ernestus R. I.; Klug N. (2004). "CT-guided percutaneous aspiration of Tarlov cyst as a useful diagnostic procedure prior to operative intervention". Acta Neurochirurgica. 146 (7): 667–670. doi:10.1007/s00701-004-0274-8.Last edited 5 days ago by Gaius CorneliusRELATED ARTICLESSyringomyeliacongenital disorder of nervous systemNeoplastic meningitisSpontaneous cerebrospinal fluid leakContent is available under CC BY-SA 3.0 unless otherwise noted.Terms of UsePrivacyDesktop

What evidence demonstrates spontaneous information increasing in the absence of an outside intelligent agency?

Evolution has been shown to increase information many, many times. It took me all of five minutes to find some examples.Here is just one:Sdic is a new gene that evolved recently in the lineage of Drosophila melanogaster. It was formed from a duplication and fusion of the gene AnnX, which encodes annexin X, and Cdic, which encodes the intermediate polypeptide chain of the cytoplasmic dynein. The fusion joins AnnX exon 4 with Cdic intron 3, which brings together three putative promoter elements for testes-specific expression of Sdic: the distal conserved element (DCE) and testes-specific element (TSE) are derived from AnnX, and the proximal conserved element (PCE) from Cdic intron 3. Sdic transcription initiates within the PCE, and translation is initiated within the sequence derived from Cdic intron 3, continuing through a 10 base pair insertion that creates a new splice donor site that enables the new coding sequence derived from intron 3 to be joined with the coding sequence of Cdic exon 4. A novel protein is created lacking 100 residues at the amino end that contain sequence motifs essential for the function of cytoplasmic dynein intermediate chains. Instead, the amino end is a hydrophobic region of 16 residues that resembles the amino end of axonemal dynein intermediate chains from other organisms. The downstream portion of Sdic features large deletions eliminating Cdic exons v2 and v3, as well as multiple frameshift deletions or insertions. The new protein becomes incorporated into the tail of the mature sperm and may function as an axonemal dynein intermediate chain. The new Sdic gene is present in about 10 tandem repeats between the wildtype Cdic and AnnX genes located near the base of the X chromosome. The implications of these findings are discussed relative to the origin of new gene functions and the process of speciation.Ranz JM, Ponce AR, Hartl DL, Nurminsky D., 2003. Origin and evolution of a new gene expressed in the Drosophila sperm axoneme. Genetica. Jul;118(2-3):233-44.Here are a few more.Alves MJ, Coelho MM, Collares-Pereira MJ, 2001. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111(1-3): 375-385. [1]Brown CJ, Todd KM, Rosenzweig RF, 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol. Biol. Evol. 15(8): 931-942. [2]Decadt, Y. JG, 2000. On the origin and impact of information in evolution paper available on the internet.Hughes AL, Friedman R, 2003. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res. 13(6A): 1259-1264.Knox JR, Moews PC and Frere J-M, 1996. Molecular evolution of bacterial beta-lactam resistance. Chemistry & Biology 3: 937-947.Kuper, J., Doenges, C. & Wilmanns, M. (2005). "Two-fold repeated (beta alpha)4 half-barrels may provide a molecular tool for dual substrate specificity." EMBO reports, 6(2), 134–139. DOILang, D. et al, 2000. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289: 1546-1550. See also Miles, E.W. & Davies, D.R., 2000. On the ancestry of barrels. Science 289: 1490.Lenski, R.E., 1995. in Population Genetics of Bacteria, Society for General Microbiology, Symposium 52, eds. Baumberg, S., Young, J.P.W., Saunders, S.R. & Wellington, E.M.H., Cambridge University Press, UK., pp. 193-215.Lenski, R., Rose, M.R., Simpson, E.C. & Tadler, S.C., 1991. American Naturalist 138: 1315-1341.Long M. (2001). "Evolution of novel genes." Curr Opin Genet Dev. 11(6):673-80.Long, M., Betran, E., Thornton, K. and Wang, W. (2003). "The origin of new genes: glimpses from the young and old." Nature Reviews Genetics. 4(11): 865-875.Lynch M and Conery JS, 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155. See also Pennisi, E., 2000. Twinned genes live life in the fast lane. Science 290: 1065-1066.Nurminsky DI, Nurminskaya MV, De Aguiar D, Hartl DL. (1998). "Selective sweep of a newly evolved sperm-specific gene in Drosophila." Nature. 396(6711):572-5.Ohta T., 2003. Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins. Genetica 118(2-3): 209-216.Park IS, Lin CH, and Walsh CT, 1996. Gain of D-alanyl-D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 35: 10464-10471.Prijambada ID et al., 1995. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Applied and Environmental Microbiology 61(5): 2020-2022.Schneider, T.D., 2000. Evolution of biological information. Nucleic Acids Res 28(14): 2794-2799. [3]Zhang J, Zhang YP, Rosenberg HF, 2002. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genetics 30(4):411-415. See also: Univ. of Michigan, 2002, How gene duplication helps in adapting to changing environments. [4]Whitman CP. (2002). "The 4-oxalocrotonate tautomerase family of enzymes: how nature makes new enzymes using a beta-alpha-beta structural motif." Arch Biochem Biophys. 402(1):1-13.PubMed DOIBos DH. (2005). "Natural selection during functional divergence to LMP7 and proteasome subunit X (PSMB5) following gene duplication." J Mol Evol. 60(2):221-8. PubMedBallicora MA, Dubay JR, Devillers CH, Preiss J. (2005). "Resurrecting the ancestral enzymatic role of a modulatory subunit." J Biol Chem. 280(11):10189-95. PubMedTodd AE, Orengo CA, Thornton JM. (2002)."Sequence and structural differences between enzyme and nonenzyme homologs." Structure (Camb). 10(10):1435-51. PubMedTodd AE, Orengo CA, Thornton JM. (2002). "Plasticity of enzyme active sites." Trends Biochem Sci. 27(8):419-26. PubMedBartlett GJ, Borkakoti N, Thornton JM. (2003). "Catalysing new reactions during evolution: economy of residues and mechanism." J Mol Biol. 331(4):829-60. PubMedJames LC, Tawfik DS. (2001). "Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution." Protein Sci. 10(12):2600-7. PubMedTodd AE, Orengo CA, Thornton JM. (2001). "Evolution of function in protein superfamilies, from a structural perspective." J Mol Biol. 307(4):1113-43. PubMedRaes, J., Van de Peer, Y. (2002). "Gene duplication, the evolution of novel gene functions, and detecting functional divergence of duplicates in silico." Appl Bioinformatics. 2(2):91-101. PubMedVan de Peer, Y., Taylor, J. S., Braasch, I., Meyer, A. "The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes." J Mol Evol. 53(4-5):436-446.Carginale, V., Trinchella, F., Capasso, C., Scudiero, R., Riggio, M., Parisi, E. (2004). "Adaptive evolution and functional divergence of pepsin gene family." Gene. 333:81-90. PubMed

Why Do Our Customer Select Us

The more I use CocoDoc, the more I love it.. very user friendly and able to help me tremendously since working from home! My advice, don't change too much, keep it simple!

Justin Miller