G 1003 2013 Free: Fill & Download for Free

GET FORM

Download the form

How to Edit Your G 1003 2013 Free Online With Efficiency

Follow the step-by-step guide to get your G 1003 2013 Free edited with accuracy and agility:

  • Hit the Get Form button on this page.
  • You will go to our PDF editor.
  • Make some changes to your document, like adding text, inserting images, and other tools in the top toolbar.
  • Hit the Download button and download your all-set document into you local computer.
Get Form

Download the form

We Are Proud of Letting You Edit G 1003 2013 Free super easily and quickly

Explore More Features Of Our Best PDF Editor for G 1003 2013 Free

Get Form

Download the form

How to Edit Your G 1003 2013 Free Online

If you need to sign a document, you may need to add text, fill in the date, and do other editing. CocoDoc makes it very easy to edit your form with just a few clicks. Let's see how can you do this.

  • Hit the Get Form button on this page.
  • You will go to our PDF editor page.
  • When the editor appears, click the tool icon in the top toolbar to edit your form, like checking and highlighting.
  • To add date, click the Date icon, hold and drag the generated date to the target place.
  • Change the default date by changing the default to another date in the box.
  • Click OK to save your edits and click the Download button for the different purpose.

How to Edit Text for Your G 1003 2013 Free with Adobe DC on Windows

Adobe DC on Windows is a useful tool to edit your file on a PC. This is especially useful when you have need about file edit offline. So, let'get started.

  • Click the Adobe DC app on Windows.
  • Find and click the Edit PDF tool.
  • Click the Select a File button and select a file from you computer.
  • Click a text box to change the text font, size, and other formats.
  • Select File > Save or File > Save As to confirm the edit to your G 1003 2013 Free.

How to Edit Your G 1003 2013 Free With Adobe Dc on Mac

  • Select a file on you computer and Open it with the Adobe DC for Mac.
  • Navigate to and click Edit PDF from the right position.
  • Edit your form as needed by selecting the tool from the top toolbar.
  • Click the Fill & Sign tool and select the Sign icon in the top toolbar to customize your signature in different ways.
  • Select File > Save to save the changed file.

How to Edit your G 1003 2013 Free from G Suite with CocoDoc

Like using G Suite for your work to complete a form? You can do PDF editing in Google Drive with CocoDoc, so you can fill out your PDF without Leaving The Platform.

  • Go to Google Workspace Marketplace, search and install CocoDoc for Google Drive add-on.
  • Go to the Drive, find and right click the form and select Open With.
  • Select the CocoDoc PDF option, and allow your Google account to integrate into CocoDoc in the popup windows.
  • Choose the PDF Editor option to open the CocoDoc PDF editor.
  • Click the tool in the top toolbar to edit your G 1003 2013 Free on the target field, like signing and adding text.
  • Click the Download button to save your form.

PDF Editor FAQ

How is gravity created? Is it because of the rotation (spinning) of the layers within big bodies? The surface of the Earth is rotating so its nucleus is probably spinning too. How many layers are rotating in the Sun? Is this why gravity exists?

I just answered that actually, but I’ll copy and paste it here, as the question is more direct:This image represents Bekenstein’s approach to what became Holographic Theory:It was based on an equation by Bekenstien, after a few generations evolved to:Lp is the Planck length (10^-35 meters), tp will be the Planck unit of time (10^-44 seconds). These are the smallest slice of space and of time possible in normal space-time. They are the Zero Point for space and time, in a quazi logical way.Where N refers to the number of ‘bits’ of information and AΩ is our world-sheet, as we fill that empty void with information (N) we inadvertently create the world-sheet AΩ. In order to derive the value of what 1 ‘bit’ of information is, we can simply do this:Setting ‘c’ as a natural number and equal to 1: Lp = tpthenGiven Einstein’s filed equationsreduces the geometry of space-time toNoting that G on the left referring to the geometry of G(uv), we end up withThe geometry of space-time is an emergent phenomenon of Information, as a fractal.The termCan only be interpreted as:However, a triangle is impossible because of the hypotenuse and height not being integers of LpWe run into the same problem with a cube (your pixel) because it is wrought with non-integers of LpA circle has pi (not even a rational number)Since every possible shape is wrought with values that are not integers of Lp, no shape is possible on a Planck Scale.On a Planck scale, space-time is shapeless. In 1957 Wheeler derived the equations for Lp and tp, in the study of the propagation of Gravity Waves, and found what he referred to as the ‘Quantum Foam.’ It is a turbulent, dynamic shapeless domain where virtual particles pop in and out f existence at a very high rate.In 2004 Wilczek (a friend of Wheeler’s) earned the Nobel in Physics for measuring the effect of the Quantum Foam on the Strong and Weak forces.As for ‘pixelation,’ we can only regard the cosmos as a 2-dimensional rendering of a 4-dimensional facade. And in this 2-dimensional, holographic construct, time is not a valid dimension.This is Holographic Theory. From Holographic Theory we are finding emergent space-time, mass-energy, and the forces of nature. For instance, above we saw the short version of how space-time actually emerges from Information along with its geometry (gravitation). Note that we are on our way to a Quantum Description of Gravitation without any Higg’s Bosons. In fact, if the Higg’s really does exist (I’m not a ‘believer’) it is emergent from the description above.Mass-energy arises from quantum entanglement and superposition within this geometry we have made out of our world-sheet AΩ. Let me find that - wait; here it is:If we take into account Wheeler’s Space-time Foam on a quantum scale, [John Archibald Wheeler with Kenneth Ford. Geons, Black Holes, and Quantum Foam.1995 ISBN 0-393-04642-7.] we might conclude that as a part of this foamy characteristic of space-time on a quantum scale is the motion of a macroscopic object progressing forward in this go-stop-go fashion described above at v=c and v=0. In today’s vernacular we might say that the object were moving as though pixelated, and as we back out from the quantum to the macroscopic we no longer see the pixelated but a ‘normal’ progression of a macroscopic object. However, there can be no ‘pixelation’ on a quantum scale, as I will describe later on, because of the foamy characteristic of space-time on a quantum scale. In fact, there can be no shape, again, this will be described.Wheeler first describes the Quantum Foam as early as 1955 [Wheeler, J. A. (January 1955). "Geons". Physical Review. 97 (2): 511. Bibcode:1955PhRv...97..511W. doi:10.1103/PhysRev.97.511]The Quantum Foam in short, is an extension of the existence of Virtual Particles that come into existence via the Uncertainty Principle. The very brief and over simplified description of this Quantum Foam is that in any volume of empty space, virtual particle-antiparticle pairs are being created and annihilated constantly. The other characteristic is that space-time on a Planck scale can conform to no shape, because every plausible shape has characteristics that are not integer values of the Planck interval. We discussed this characteristic at length in The Holographic Principle of Quantum Mechanics. These particle-antiparticle pairs arise from the Quantum Electro Dynamic Vacuum Energy, that is, they 'borrow' energy from Heisenberg's Uncertainty principle. The virtual particle-antiparticle pairs exist for extremely brief periods of time, and recombine to annihilate themselves back into nothingness again. This occurs at a very high rate of speed and is constant, on the order of 10-44 seconds. We say that space, therefore, has foam like character that is referred to as the Quantum Foam. The Quantum foam plays a direct role in the Quantum Electrodynamic Vacuum Energy, on the order of 10120 joules of energy per cubic centimeter of absolute nothingness (described in the glossary).The effect they have on a Planck scale (of size, 10-35 meters) is to curve Space-Time in such a way as to give space-time a 'foamy' characteristic. A few -1.Thorne, Kip S. (1994). Black Holes and Time Warps.2.W. W. Norton. pp. 494–496. ISBN 0-393-31276-3.3.Ian H., Redmount; Wai-Mo Suen (1994). "Quantum Dynamics of Lorentzian Space-time Foam". Physical Review D 49: 5199. Doi: 10.1103/PhysRevD.49.5199. arXiv:gr-qc/93090174.Moyer, Michael (17 January 2012). "Is Space Digital?:". Scientific American. Retrieved 3 February 2013.5.Baez, John (2006-10-08). "What's the Energy Density of the Vacuum?". Retrieved 2007-12-18.6.John Archibald Wheeler with Kenneth Ford. Geons, Black Holes, and Quantum Foam. 1995 ISBN 0-393-04642-7This describes the ‘quantum foam,’ a characteristic of space-time that describes the dynamic structure on the Planck scale. There is a short review of this by wilczek, who actually measured the quantum foam’s effect on the strong and weak forces (for which he earned a Nobel, at 48 minutes into: https://youtu.be/914jzZ4LXcUIn this bit, N, we either have information in it, or there is no information in it. If there is information in it, it by definition is entangled with some other bit of information somewhere; because they were created as a particle/antiparticle pair vie the HUP. As the distance between these two bits N and N’ increases, the probability that they are quantum entangled decreases, because the wave function in the HUP limits the amount of time such a thing can exist, and thus the distance. If N is entangled with N’, then each has an element a or its symmetric partner a’.If there is no N’ then there is no space-time in this scenario. If there is an N’, then time limits us to the probability that it contains either a or a’. From this time constraint, the number of possible superpositions is defined, and so the size of our world sheet, AΩ.That is, as the number of superpositions increases, we have entropy, as the number of superpositions decreases, we have Ordiny. Gravitation is unidirectional Ordiny. So is a magnetic dipole. The Strong Force has two components, the Internal Strong Force that binds hypothetical ‘quarks’ together; Ordiny, and the Intermediate Strong Force (mediated by mesons) the binds protons and neutrons together, more Ordiny.The Weak force can be viewed as a form of entropy, as a W boson escapes the nucleus, decaying into an electron and electron-antineutrino.For the most part, the forces of nature represent Ordiny. Entropy occurs under extreme conditions only, such as the Big Bang and Black Holes.To simplify again, the surface of our world-sheet AΩ is defined by the number of Lp^2 available on this 2-dimensional surface. As the number increases, the number of possible superpositions increases and entropy emerges. If the number decreases, the number of possible superpositions decreases, and Ordiny emerges.This is how space-time is then an emergent form from information entropy vs. Ordiny. You may also note that ‘c’ is not a velocity, it defines the relationship between the world-sheet AΩ with respect to Lp and tp (space and time). It is not a ‘speed limit’ it is the definition of space-time. The ‘speed limit’ is actually the result of c=1Lp/1tp:1.Arntzenius, Frank. (2000) “Are there Really Instantaneous Velocities?”, The Monist 83, pp. 187-208.2.Barnes, J. (1982). The Presocratic Philosophers, Routledge & Kegan Paul:3.Barrow, John D. (2005). The Infinite Book: A Short Guide to the Boundless, Timeless and Endless, Pantheon Books, New York.4.Benacerraf, Paul (1962). “Tasks, Super-Tasks, and the Modern Eleatics,” The Journal of Philosophy, 59, pp. 765-784.5.Bergson, Henri (1946). Creative Mind, translated by M. L. Andison. Philosophical Library: New York.6.Black, Max (1950-1951). “Achilles and the Tortoise,” Analysis 11, pp. 91-101.7.Cajori, Florian (1920). “The Purpose of Zeno’s Arguments on Motion,” Isis, vol. 3, no. 1, pp. 7-20.8.Cantor, Georg (1887). "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen." Bihang till Kongl. Svenska Vetenskaps-Akademien Handlingar , Bd. 11 (1886-7), article 19. P. A. Norstedt & Sôner: Stockholm.9.Chihara, Charles S. (1965). “On the Possibility of Completing an Infinite Process,” Philosophical Review 74, no. 1, p. 74-87.10.Copleston, Frederick, S.J. (1962). “The Dialectic of Zeno,” chapter 7 of A History of Philosophy, Volume I, Greece and Rome, Part I, Image Books: Garden City.11.Dainton, Barry. (2010). Time and Space, Second Edition, McGill-Queens University Press: Ithaca.12.Dauben, J. (1990). Georg Cantor, Princeton University Press: Princeton.13.De Boer, Jesse (1953). “A Critique of Continuity, Infinity, and Allied Concepts in the Natural Philosophy of Bergson and Russell,” in Return to Reason: Essays in Realistic Philosophy, John Wild, ed., Henry Regnery Company: Chicago, pp. 92-124.14.Diels, Hermann and W. Kranz (1951). Die Fragmente der Vorsokratiker, sixth ed., Weidmannsche Buchhandlung: Berlin.15.Dummett, Michael (2000). “Is Time a Continuum of Instants?,” Philosophy, 2000, Cambridge University Press: Cambridge, pp. 497-515.16.Earman J. and J. D. Norton (1996). “Infinite Pains: The Trouble with Supertasks,” in Paul Benacerraf: the Philosopher and His Critics, A. Morton and S. Stich (eds.), Blackwell: Cambridge, MA, pp. 231-261.17.Feferman, Solomon (1998). In the Light of Logic, Oxford University Press, New York.18.Freeman, Kathleen (1948). Ancilla to the Pre-Socratic Philosophers, Harvard University Press: Cambridge, MA. Reprinted in paperback in 1983.19.Grünbaum, Adolf (1967). Modern Science and Zeno’s Paradoxes, Wesleyan University Press: Middletown, Connecticut.20.Grünbaum, Adolf (1970). “Modern Science and Zeno’s Paradoxes of Motion,” in (Salmon, 1970), pp. 200-250.21.Hamilton, Edith and Huntington Cairns (1961). The Collected Dialogues of Plato Including the Letters, Princeton University Press: Princeton.22.Harrison, Craig (1996). “The Three Arrows of Zeno: Cantorian and Non-Cantorian Concepts of the Continuum and of Motion,” Synthese, Volume 107, Number 2, pp. 271-292.23.Heath, T. L. (1921). A History of Greek Mathematics, Vol. I, Clarendon Press: Oxford. Reprinted 1981.24.Hintikka, Jaakko, David Gruender and Evandro Agazzi. Theory Change, Ancient Axiomatics, and Galileo’s Methodology, D. Reidel Publishing Company, Dordrecht.25.Kirk, G. S., J. E. Raven, and M. Schofield, eds. (1983). The Presocratic Philosophers: A Critical History with a Selection of Texts, Second Edition, Cambridge University Press: Cambridge.26.Maddy, Penelope (1992) “Indispensability and Practice,” Journal of Philosophy 59, pp. 275-289.27.Matson, Wallace I (2001). “Zeno Moves!” pp. 87-108 in Essays in Ancient Greek Philosophy VI: Before Plato, ed. by Anthony Preus, State University of New York Press: Albany.28.McCarty, D.C. (2005). “Intuitionism in Mathematics,” in The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, Oxford University Press, Oxford, pp. 356-86.29.McLaughlin, William I. (1994). “Resolving Zeno’s Paradoxes,” Scientific American, vol. 271, no. 5, Nov., pp. 84-90.30.Owen, G.E.L. (1958). “Zeno and the Mathematicians,” Proceedings of the Aristotelian Society, New Series, vol. LVIII, pp. 199-222.31.Posy, Carl. (2005). “Intuitionism and Philosophy,” in The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, Oxford University Press, Oxford, pp. 318-54.32.Proclus (1987). Proclus’ Commentary on Plato’s Parmenides, translated by Glenn R. Morrow and John M. Dillon, Princeton University Press: Princeton.33.Rescher, Nicholas (2001). Paradoxes: Their Roots, Range, and Resolution, Carus Publishing Company: Chicago.34.Pages 94-102 apply the Standard Solution to all of Zeno's paradoxes. Rescher calls the Paradox of Alike and Unlike the "Paradox of Differentiation."35.Rivelli, Carlo (2017). Reality is Not What It Seems: The Journey to Quantum Gravity, Riverhead Books: New York.36.Rivelli's chapter 6 explains how the theory of loop quantum gravity provides a new solution to Zeno's Paradoxes that is more in tune with the intuitions of Democratus because it rejects the assumption that a bit of space can always be subdivided.37.Russell, Bertrand (1914). Our Knowledge of the External World as a Field for Scientific Method in Philosophy, Open Court Publishing Co.: Chicago.38.Russell champions the use of contemporary real analysis and physics in resolving Zeno’s paradoxes.39.Salmon, Wesley C., ed. (1970). Zeno’s Paradoxes, The Bobbs-Merrill Company, Inc.: Indianapolis and New York. Reprinted in paperback in 2001.40.Szabo, Arpad (1978). The Beginnings of Greek Mathematics, D. Reidel Publishing Co.: Dordrecht.41.Tannery, Paul (1885). “‘Le Concept Scientifique du continu: Zenon d’Elee et Georg Cantor,” pp. 385-410 of Revue Philosophique de la France et de l’Etranger, vol. 20, Les Presses Universitaires de France: Paris.42.Tannery, Paul (1887). Pour l’Histoire de la Science Hellène: de Thalès à Empédocle, Alcan: Paris. 2nd ed. 1930.43.Thomson, James (1954-1955). “Tasks and Super-Tasks,” Analysis, XV, pp. 1-13.44.Tiles, Mary (1989). The Philosophy of Set Theory: An Introduction to Cantor’s Paradise, Basil Blackwell: Oxford.45.Vlastos, Gregory (1967). “Zeno of Elea,” in The Encyclopedia of Philosophy, Paul Edwards (ed.), The Macmillan Company and The Free Press: New York.46.White, M. J. (1992). The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Clarendon Press: Oxford.47.Wisdom, J. O. (1953). “Berkeley’s Criticism of the Infinitesimal,” The British Journal for the Philosophy of Science, Vol. 4, No. 13, pp. 22-25.48.Wolf, Robert S. (2005). A Tour Through Mathematical Logic, The Mathematical Association of America: Washington, DC.49.Aristotle (1930) [ancient]. "Physics," from The Works of Aristotle, Vol. 2, (R. P. Hardie & R. K. Gaye, translators, W.D. Ross, ed.), Oxford, UK:Clarendon, see [1], accessed 14 October 2015.50.Laertius, Diogenes (about 230 CE). "Pyrrho". Lives and Opinions of Eminent Philosophers IX. passage 72. ISBN1-116-71900-251.Sudarshan, E.C.G.; Misra, B. (1977). "The Zeno's paradox in quantum theory". Journal of Mathematical Physics 18 (4): 756–763.52.T. Nakanishi, K. Yamane, and M. Kitano: Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping Phys. Rev. A 65, 013404 (2001).53.Fischer, M.; Gutiérrez-Medina, B.; Raizen, M. (2001). "Observation of the Quantum Zeno and Anti-Zeno Effects in an Unstable System". Physical Review Letters 87 (4): 040402.54.M. C. Fischer, B. Guti´errez-Medina, and M. G. Raizen, Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (February 1, 2008)55.Weyl, H. (1928), Gruppentheorie und Quantenmechanik, Leipzig: Hirzel56.Searchable Online Accommodation Research; Light Sensitivity.57.SOAR; Employees with Epilepsy.58.SOAR; Employees with Lupus.59.Shadick NA, Phillips CB, Sangha O; et al. (December 1999). "Musculoskeletal and neurologic outcomes in patients with previously treated Lyme disease". Annals of Internal Medicine 131 (12): 919–26. doi:10.7326/0003-4819-131-12-199912210-00003. PMID 1061064260.Canadian Center for Occupation Health and Safety; Lighting Ergonomics, Light Flicker.61.Furuta, Aya (2012), "One Thing Is Certain: Heisenberg's Uncertainty Principle Is Not Dead", Scientific American.62.Ozawa, Masanao (2003), "Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement", Physical Review A, 67 (4): 42105, arXiv:quant-ph/0207121 Freely accessible, Bibcode:2003PhRvA..67d2105O, doi:10.1103/PhysRevA.67.04210563.Loudon, Rodney, The Quantum Theory of Light (Oxford University Press, 2000), ISBN 0-19-850177-364.D. F. Walls and G.J. Milburn, Quantum Optics, Springer Berlin 199465.C W Gardiner and Peter Zoller, "Quantum Noise", 3rd ed, Springer Berlin 200466.D. Walls, Squeezed states of light, Nature 306, 141 (1983)67.R. E. Slusher et al., Observation of squeezed states generated by four wave mixing in an optical cavity, Phys. Rev. Lett. 55 (22), 2409 (1985)68.Breitenbach, G.; Schiller, S.; Mlynek, J. (29 May 1997). "Measurement of the quantum states of squeezed light" (PDF). Nature. 387 (6632): 471–475. Bibcode:1997Natur.387..471B. doi:10.1038/387471a0.69.G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light", Nature, 387, 471 (1997)70.Entanglement evaluation with Fisher information - http://arxiv.org/pdf/quant-ph/06...71.A. I. Lvovsky, "Squeezed light," [1401.4118] Squeezed light72.L.-A. Wu, M. Xiao, and H. J. Kimble, "Squeezed states of light from an optical parametric oscillator," J. Opt. Soc. Am. B 4, 1465 (1987).73.Heidmann, A.; Horowicz, R.; Reynaud, S.; Giacobino, E.; Fabre, C.; Camy, G. (1987). "Observation of Quantum Noise Reduction on Twin Laser Beams". Physical Review Letters. 59: 2555. Bibcode:1987PhRvL..59.2555H. doi:10.1103/physrevlett.59.2555.74.A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, "On-Chip Optical Squeezing," Physical Review Applied 3, 044005 (2015). [1309.6371] On-Chip Optical Squeezing75.Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.; Peng, K. C. (1992). "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables". Phys. Rev. Lett. 68: 3663. Bibcode:1992PhRvL..68.3663O. doi:10.1103/physrevlett.68.3663. PMID 10045765.76.Villar, A. S.; Cruz, L. S.; Cassemiro, K. N.; Martinelli, M.; Nussenzveig, P. (2005). "Generation of Bright Two-Color Continuous Variable Entanglement". Phys. Rev. Lett. 95: 243603. arXiv:quant-ph/0506139 Freely accessible. Bibcode:2005PhRvL..95x3603V. doi:10.1103/physrevlett.95.243603. PMID 16384378.77.Grote, H.; Danzmann, K.; Dooley, K. L.; Schnabel, R.; Slutsky, J.; Vahlbruch, H. (2013). "First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory". Phys. Rev. Lett. 110: 181101. arXiv:1302.2188 Freely accessible. Bibcode:2013PhRvL.110r1101G. doi:10.1103/physrevlett.110.181101.78.The LIGO Scientific Collaboration (2011). "A gravitational wave observatory operating beyond the quantum shot-noise limit". Nature Physics. 7: 962. arXiv:1109.2295 Freely accessible. Bibcode:2011NatPh...7..962L. doi:10.1038/nphys2083.79.Wineland, D. J.; Bollinger, J. J.; Heinzen, D. J. (1 July 1994). "Squeezed atomic states and projection noise in spectroscopy". Physical Review A. 50 (2): 67–88. Bibcode:1994PhRvA..50...67W. doi:10.1103/PhysRevA.50.67.80.Machida, S.; Yamamoto, Y.; Itaya, Y. (9 March 1987). "Observation of amplitude squeezing in a constant-current driven semiconductor laser". Physical Review Letters. 58 (10): 1000–1003. Bibcode:1987PhRvL..58.1000M. doi:10.1103/PhysRevLett.58.1000. PMID 10034306.81.O. V. Misochko, J. Hu, K. G. Nakamura, "Controlling phonon squeezing and correlation via one- and two-phonon interference," [1011.2001] Controlling phonon squeezing and correlation via one- and two-phonon interference82.Ma, Jian; Wang, Xiaoguang; Sun, C.P.; Nori, Franco (December 2011). "Quantum spin squeezing". Physics Reports. 509 (2–3): 89–165. arXiv:1011.2978 Freely accessible. Bibcode:2011PhR...509...89M. doi:10.1016/j.physrep.2011.08.003.83.Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A. (11 January 2016). "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms". Nature. 529: 505–8. Bibcode:2016Natur.529..505H. doi:10.1038/nature16176. PMID 26751056.84.Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K. (4 March 2016). "Deterministic Squeezed States with Collective Measurements and Feedback". Physical Review Letters. 116 (9): 093602. arXiv:1512.02150 Freely accessible. Bibcode:2016PhRvL.116i3602C. doi:10.1103/PhysRevLett.116.093602. PMID 26991175.85.Bohnet, J. G.; Cox, K. C.; Norcia, M. A.; Weiner, J. M.; Chen, Z.; Thompson, J. K. (13 July 2014). "Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit". Nature Photonics. 8 (9): 731–736. arXiv:1310.3177 Freely accessible. Bibcode:2014NaPho...8..731B. doi:10.1038/nphoton.2014.151.86.Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (17 April 2014). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters. 112 (15): 155304. arXiv:1403.4542 Freely accessible. Bibcode:2014PhRvL.112o5304L. doi:10.1103/PhysRevLett.112.155304. PMID 24785048.87.Rini, Matteo (September 6, 2016). "Synopsis: A Tight Squeeze". Physics.88.Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman (2016-09-06). "Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency". Physical Review Letters. 117 (11): 110801. Bibcode:2016PhRvL.117k0801V. doi:10.1103/PhysRevLett.117.110801. PMID 27661673.89.Eberle, Tobias; Steinlechner, Sebastian; Bauchrowitz, Jöran; Händchen, Vitus; Vahlbruch, Henning; Mehmet, Moritz; Müller-Ebhardt, Helge; Schnabel, Roman (22 June 2010). "Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection". Physical Review Letters. 104 (25): 251102. arXiv:1007.0574 Freely accessible. Bibcode:2010PhRvL.104y1102E. doi:10.1103/PhysRevLett.104.251102. PMID 20867358.90.Polzik, E. S. (1992-01-01). "Spectroscopy with squeezed light". Physical Review Letters. 68 (20): 3020–3023. Bibcode:1992PhRvL..68.3020P. doi:10.1103/PhysRevLett.68.3020.91.Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletić, Vladan (25 June 2010). "Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock". Physical Review Letters. 104 (25): 250801. arXiv:1004.1725 Freely accessible. Bibcode:2010PhRvL.104y0801L. doi:10.1103/PhysRevLett.104.250801. PMID 20867356.92.Louchet-Chauvet, Anne; Appel, Jürgen; Renema, Jelmer J; Oblak, Daniel; Kjaergaard, Niels; Polzik, Eugene S (28 June 2010). "Entanglement-assisted atomic clock beyond the projection noise limit". New Journal of Physics. 12 (6): 065032. arXiv:0912.3895 Freely accessible. Bibcode:2010NJPh...12f5032L. doi:10.1088/1367-2630/12/6/065032.93.Kitagawa, Masahiro; Ueda, Masahito (1 June 1993). "Squeezed spin states". Physical Review A. 47 (6): 5138–5143. Bibcode:1993PhRvA..47.5138K. doi:10.1103/PhysRevA.47.5138.94.Braunstein, Samuel L.; van Loock, Peter (29 June 2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77 (2): 513–577. arXiv:quant-ph/0410100 Freely accessible. Bibcode:2005RvMP...77..513B. doi:10.1103/RevModPhys.77.513.95.Furusawa, A. (23 October 1998). "Unconditional Quantum Teleportation". Science. 282 (5389): 706–709. Bibcode:1998Sci...282..706F. doi:10.1126/science.282.5389.706.96.Menicucci, Nicolas C.; Flammia, Steven T.; Pfister, Olivier (22 September 2008). "One-Way Quantum Computing in the Optical Frequency Comb". Physical Review Letters. 101 (13): 13501. arXiv:0804.4468 Freely accessible. Bibcode:2008PhRvL.101m0501M. doi:10.1103/PhysRevLett.101.130501. PMID 18851426.97.Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters. 84: 1–5. arXiv:quant-ph/9903047 Freely accessible. Bibcode:2000PhRvL..84....1K. doi:10.1103/PhysRevLett.84.1.98.Ionicioiu, R.; Terno, D. R. (2011). "Proposal for a quantum delayed-choice experiment". Phys. Rev. Lett. 107 (23): 230406. arXiv:1103.0117 Freely accessible. Bibcode:2011PhRvL.107w0406I. doi:10.1103/physrevlett.107.230406. PMID 22182073.99.Jump up ^ Greene, Brian (2004). The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Alfred A. Knopf. p. 198. ISBN 0-375-41288-3.100.Octavio Obreg´on, Superstatistics and Gravitation, Entropy 2010, 12, 2067-2076; doi:10.3390/e12092067101.Verlinde, E.P. On the origin of gravity and the laws of Newton. arXiv 2010, 1001.0785.102.Beckenstein, Black Holes and Entropy, Phy Rev D 7(8) 15April 1973103.Y Wang, J M Kratochvil, A Linde, and M Shmakova, Current Observational Constraints on Cosmic Doomsday. JCAP 0412 (2004) 006, astro-ph/0409264104.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955105.Heisenberg, W. (1927), "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", Zeitschrift für Physik (in German), 43 (3–4): 172–198, Bibcode:1927ZPhy...43..172H, doi:10.1007/BF01397280.. Annotated pre-publication proof sheet of Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, March 21, 1927.106.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955107.Daniel M. Greenberger, Conceptual Problems Related to Time and Mass in Quantum Theory, Dept. of Physics, CCNY, New York, NY, 10031,USA. Sep 2010108.V. Bargmann, Ann. Math. 59, 1(1954).109.Roberto Colella, Albert W. Overhauser, Samuel A. Werner. “Observation of Gravitationally Induced Quantum Interference”, Physical Review Letters, 34, 1472 (1975). Abstract.110.Magdalena Zych, Fabio Costa, Igor Pikovski, Časlav Brukner. “Quantum interferometric visibility as a witness of general relativistic proper time”, Nature Communications, 2, 505 (2011). Abstract. 2Physics Article.111.Yair Margalit, Zhifan Zhou, Shimon Machluf, Daniel Rohrlich, Yonathan Japha, Ron Folman. “A self-interfering clock as a 'which path' witness”, published online in 'Science Express' (August 6, 2015). Abstract. 2Physics Article.112.Igor Pikovski, Magdalena Zych, Fabio Costa, Časlav Brukner, “Universal decoherence due to gravitational time dilation”, Nature Physics ,11, 668-672 (2015). Abstract.113.Max Born, "Einstein's Theory of Relativity," Dover, 1962, pp. 318-320114.Carsten Robens, Wolfgang Alt, Dieter Meschede, Clive Emary, and Andrea Alberti, “Ideal Negative Measurements in Quantum Walks Disprove Theories Based on Classical Trajectories,” Phys. Rev. X 5, 011003 (2015)115.A. J. Leggett and A. Garg, “Quantum Mechanics Versus Macroscopic Realism: Is the Flux There When Nobody Looks?,” Phys. Rev. Lett. 54, 857 (1985)116.C. Emary, N. Lambert, and F. Nori, “Leggett-Garg Inequalities,” Rep. Prog. Phys. 77, 016001 (2014)117.M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G. White, and G. J. Pryde, “Violation of the Leggett-Garg Inequality with Weak Measurements of Photons,” Proc. Natl. Acad. Sci. 108, 1256 (2011)118.G. C. Knee et al., “Violation of a Leggett-Garg Inequality with Ideal Non-Invasive Measurements,” Nature Commun. 3, 606 (2012)119.G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a Temporal Bell Inequality for Single Spins in a Diamond Defect Center,” Phys. Rev. Lett. 107, 090401 (2011)120.A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, “Experimental Violation of a Bell’s Inequality in Time with Weak Measurement,” Nature Phys. 6, 442 (2010)121.S. Nimmrichter and K. Hornberger, “Macroscopicity of Mechanical Quantum Superposition States,” Phys. Rev. Lett. 110, 160403 (2013)122.K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackermüller, S. Nimmrichter, I. V. Goldt, O. Boltalina, and M. Arndt, “Theory and Experimental Verification of Kapitza–Dirac–Talbot–Lau Interferometry,” New J. Phys. 11, 043032 (2009)123.Pound, R. V.; Rebka Jr. G. A. (November 1, 1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (9): 439–441. Bibcode:1959PhRvL...3..439P. doi:10.1103/PhysRevLett.3.439.124.Cf. Misner, Thorne & Wheeler 1973, §20.4 (‘Gravitation’)125.Physics for Scientists and Engineers, Volume 2, page 1073 - Lawrence S. Lerner - Science – 1997126.McGlinn, William D. (2004), Introduction to relativity, JHU Press, p. 43, ISBN 0-8018-7047-X Extract of page 43127.E. F. Taylor; J. A. Wheeler (1992), Spacetime Physics, second edition, New York: W.H. Freeman and Company, pp. 248–249, ISBN 0-7167-2327-1128.L. B. Okun', The concept of mass (mass, energy, relativity), Institute of Theoretical and Experimental Physics, Moscow Usp.Fiz.Nauk 158, 511-530 (July 1989)129.Erik Verlinde, On the Origin of Gravity and the Laws of Newton; arXiv:1001.0785v1 [hep-th] 6 Jan 2010130.Rees, Martin (May 3, 2001). Just Six Numbers: The Deep Forces That Shape The Universe. New York, NY: Basic Books; First American edition. p. 4.131.Gribbin. J and Rees. M, Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology p. 7, 269, 1989, ISBN 0-553-34740-3132.Davis, Paul (2007). Cosmic Jackpot: Why Our Universe Is Just Right for Life. New York, NY: Orion Publications. p. 2. ISBN 0618592261.133.Stephen Hawking, 1988. A Brief History of Time, Bantam Books, ISBN 0-553-05340-X, p. 7, 125.134.Lawrence Joseph Henderson, The fitness of the environment: an inquiry into the biological significance of the properties of matter The Macmillan Company, 1913135.R. H. Dicke (1961). "Dirac's Cosmology and Mach's Principle". Nature. 192 (4801): 440–441. Bibcode:1961Natur.192..440D. doi:10.1038/192440a0.136.Heilbron, J. L. The Oxford guide to the history of physics and astronomy, Volume 10 2005, p. 8137.Profile of Fred Hoyle at OPT Archived 2012-04-06 at the Wayback Machine.. Telescopes, Astronomy Cameras, Telescope Mounts & Accessories. Retrieved on 2013-03-11.138.Paul Davies, 1993. The Accidental Universe, Cambridge University Press, p70-71139.MacDonald, J.; Mullan, D. J. (2009). "Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle". Physical Review D. 80 (4): 043507. arXiv:0904.1807 Freely accessible. Bibcode:2009PhRvD..80d3507M. doi:10.1103/physrevd.80.043507.140.Abbott, Larry (1991). "The Mystery of the Cosmological Constant". Scientific American. 3 (1): 78.141.Lemley, Brad. "Why is There Life?". Discover magazine. Retrieved 23 August 2014.142.Adams, Fred C., 2008, “Stars in other universes: stellar structure with different fundamental constants”, Journal of Cosmology and Astroparticle Physics, 08: 10. doi:10.1088/1475-7516/2008/08/010143.Barnes, Luke A., 2012, “The fine-tuning of the universe for intelligent life”, Publications of the Astronomical Society of Australia, 29(4): 529–564. doi:10.1071/AS12015144.Carter, B., 1974, “Large number coincidences and the anthropic principle in cosmology”, in M. S. Longair (ed.), Confrontation of Cosmological Theory with Observational Data, Dordrecht: Reidel, pp. 291–298.145.Collins, R., 2009, “The teleological argument: an exploration of the fine-tuning of the cosmos”, in W. L. Craig and J.P. Moreland (eds.), The Blackwell Companion to Natural Theology, Oxford: Blackwell146.Colyvan M., J. L. Garfield, and G. Priest, 2005, “Problems with the argument from fine-tuning”, Synthese, 145(39): 325–338. doi:10.1007/s11229-005-6195-0147.Donoghue, John F., 2007, “The fine-tuning problems of particle physics and anthropic mechanisms”, in Carr 2007: 231–246. doi:10.1017/CBO9781107050990.017148.Earman, John and Jesus Mosterín, 1999, “A critical look at inflationary cosmology”, Philosophy of Science, 66(1): 1–49. doi:10.1086/392675149.Grinbaum, Alexei, 2012, “Which fine-tuning arguments are fine?”,, Foundations of Physics, 42(5): 615–631. doi:10.1007/s10701-012-9629-9150.Hogan, Craig J., 2000, “Why the universe is just so”, Reviews of Modern Physics, 72: 1149–1161. doi:10.1103/RevModPhys.72.1149151.Landsman, Klaas, 2016, “The fine-tuning argument: exploring the improbability of our own existence”, in K. Landsman and E. van Wolde (eds.), The Challenge of Chance, Heidelberg: Springer152.McCoy, C.D., 2015, “Does inflation solve the hot big bang model’s fine-tuning problems?”, Studies in History and Philosophy of Modern Physics, 51: 23–36. doi:10.1016/j.shpsb.2015.06.002153.Roberts, John T., 2012, “Fine-tuning and the infrared bull’s eye”, Philosophical Studies, 160(2): 287–303. doi:10.1007/s11098-011-9719-0154.Tegmark, Max, 2014, Our Mathematical Universe: My Quest for the Ultimate Nature of Reality, New York: Knopf.155.Tegmark, Max and Martin J. Rees, 1998, “Why is the cosmic microwave background fluctuation level 10−510−5”, The Astrophysical Journal, 499(2): 526–532. doi:10.1086/305673156.Tegmark, Max, Anthony Aguirre, Martin J. Rees, and Frank Wilczek, 2006, “Dimensionless constants, cosmology, and other dark matters”, Physical Review D, 73(2): 023505. doi:10.1103/PhysRevD.73.023505157.Wheeler, J. A. (January 1955). "Geons". Physical Review. 97 (2): 511. Bibcode:1955PhRv...97..511W. doi:10.1103/PhysRev.97.511.158.J S Briggs 2008 J. Phys.: Conf. Ser. 99 012002, A derivation of the time-energy uncertainty relation.159.Jan Hilgevoord, The uncertainty principle for energy and time, Department of History and Foundations of Mathematics and Science, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands, (Received 29 January 1996; accepted 10 June 1996)160.L. MANDELSTAM * and lg. TAMM, THE UNCERTAINTY RELATION BETWEEN ENERGY AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS, Academy of Scioences of the USSR, 1945.161.J. A. Wheeler and R. P., Feynman, “Interaction with the absorber as a mechanism of radiation”, Rev.Mod. Phys. 17 157 (1945).162.J. E. Hogarth, “ Considerations of the Absorber Theory of Radiation”, Proc. Roy. Soc. A267,163.pp365-383 (1962).164.Cramer, John G. (July 1986). "The Transactional Interpretation of Quantum Mechanics". Reviews of Modern Physics. 58 (3): 647–688. Bibcode:1986RvMP...58..647C. doi:10.1103/RevModPhys.58.647.165.Cramer, John G. (February 1988). "An Overview of the Transactional Interpretation" (PDF). International Journal of Theoretical Physics. 27 (2): 227–236. Bibcode:1988IJTP...27..227C. doi:10.1007/BF00670751.166.Cramer, John G. (3 April 2010). "Quantum Entanglement, Nonlocality, Back-in-Time Messages" (PPT). John G. Cramer's Home Page. University of Washington.167.Cramer, John G. (2016). The Quantum Handshake: Entanglement, Nonlocality and Transactions. Springer Science+Business Media. ISBN 978-3319246406.168.Richard Feynman: A life in science, p.273 et seq., John Gribbin, Mary Gribbin, Dutton, Penguin Books, 1997169.M. C. Fischer, B. Guti´errez-Medina, and M. G. Raizen, Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (February 1, 2008)170.Sudarshan, E.C.G.; Misra, B. (1977). "The Zeno's paradox in quantum theory". Journal of Mathematical Physics 18 (4): 756–763.171.T. Nakanishi, K. Yamane, and M. Kitano: Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping Phys. Rev. A 65, 013404 (2001).172.P. Facchi, D. A. Lidar, & S. Pascazio Unification of dynamical decoupling and the quantum Zeno effect Physical Review A 69, 032314 (2004)173.UNIFORM DETERMINATION OF DEATH ACT , Perspectives on Death and Dying 5th Edition, An Online Textbook edited by Dr. Philip A. Pecorino.174.Dr. Leon Kass, in "A Statutory Definition of the Standards for Determining Human Death: An Appraisal and a Proposal," 121 Pa. L. Rev. 87. 1975175.§1. [Determination of Death.] An individual who has sustain ­either (1) irreversible cessation of circulator and respiratory­functions, or (2) irreversible cessation of all functionsof the entire brain, including the brain stem, are dead. A determination of death must be made in accordance with ­accepted medical standards.176.§2. [Uniformity of Construction and Application.] This Act shall be applied and construed to effectuate its general purpose to make uniform the law with respect to the subject of this Act among states enacting it.177.§3. [Short Title.] This Act may be cited as the Uniform Determination of Death Act.178.Capron, A. M. and Kass, L. R. "A Statutory Definition of the Standards for Determining Human Death" University of Pennsylvania Law Review 121:87-118, 1972.179.Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters. 84: 1–5. arXiv:quant-ph/9903047 Freely accessible. Bibcode:2000PhRvL..84....1K. doi:10.1103/PhysRevLett.84.1.180.Scully, Marlan O.; Kai Drühl (1982). "Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics". Physical Review A. 25 (4): 2208–2213. Bibcode:1982PhRvA..25.2208S. doi:10.1103/PhysRevA.25.2208.181.Ma, Zeilinger, et al., "Quantum erasure with causally disconnected choice". See: Quantum erasure with causally disconnected choice "Our results demonstrate that the viewpoint that the system photon behaves either definitely as a wave or definitely as a particle would require faster-than-light communication. Because this would be in strong tension with the special theory of relativity, we believe that such a viewpoint should be given up entirely."182.Peruzzo, et al., "A quantum delayed choice experiment", arXiv:1205.4926v2 [quant-ph] 28 Jun 2012. This experiment uses Bell inequalities to replace the delayed choice devices, but it achieves the same experimental purpose in an elegant and convincing way.183.Zajonc, A. G.; Wang, L. J.; Zou, X. Y.; Mandel, L. (1991). "Quantum eraser". Nature. 353 (6344): 507–508. Bibcode:1991Natur.353..507Z. doi:10.1038/353507b0.184.Herzog, T. J.; Kwiat, P. G.; Weinfurter, H.; Zeilinger, A. (1995). "Complementarity and the quantum eraser" (PDF). Physical Review Letters. 75 (17): 3034–3037. Bibcode:1995PhRvL..75.3034H. doi:10.1103/PhysRevLett.75.3034. PMID 10059478. Archived from the original (PDF) on 24 December 2013. Retrieved 13 February 2014.185.Walborn, S. P.; et al. (2002). "Double-Slit Quantum Eraser". Phys. Rev. A. 65 (3): 033818. arXiv:quant-ph/0106078 Freely accessible. Bibcode:2002PhRvA..65c3818W. doi:10.1103/PhysRevA.65.033818.186.Jacques, Vincent; Wu, E; Grosshans, Frédéric; Treussart, François; Grangier, Philippe; Aspect, Alain; Rochl, Jean-François (2007). "Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment". Science. 315 (5814): 966–968. arXiv:quant-ph/0610241 Freely accessible. Bibcode:2007Sci...315..966J. doi:10.1126/science.1136303. PMID 17303748.187.Chiao, R. Y.; P. G. Kwiat; Steinberg, A. M. (1995). "Quantum non-locality in two-photon experiments at Berkeley". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B. 7 (3): 259–278. arXiv:quant-ph/9501016 Freely accessible. Bibcode:1995QuSOp...7..259C. doi:10.1088/1355-5111/7/3/006. Retrieved 13 February 2014.188.Jordan, T. F. (1993). "Disppearance and reappearance of macroscopic quantum interference". Physical Review A. 48 (3): 2449–2450. Bibcode:1993PhRvA..48.2449J. doi:10.1103/PhysRevA.48.2449.189.Peruzzo, Alberto; Shadbolt, Peter J.; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L. (2012). "A quantum delayed choice experiment". Science. 338 (6107): 634–637. arXiv:1205.4926 Freely accessible. Bibcode:2012Sci...338..634P. doi:10.1126/science.1226719. PMID 23118183.190.Eberhard, Phillippe H.; Ronald R. Ross (1989). "Quantum field theory cannot provide faster-than-light communication". Foundations of Physics Letters. 2 (2): 127–149. Bibcode:1989FoPhL...2..127E. doi:10.1007/BF00696109.191.Benoit B. Mandelbrot, Fractals, Encyclopedia of Statiscal Sciences, DOI: 10.1002/0471667196.ess0816 1977192.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955193.Misner, Thorne, Zurek; John Wheeler, relativity, and quantum information, http://its.caltech.edu/kip/pubsc...194.Bondi, H, Relativity and Common Sense 1980 ISBN-13: 978-0486240213195.Kennard, E. H. (1927), "Zur Quantenmechanik einfacher Bewegungstypen", Zeitschrift für Physik (in German), 44 (4–5): 326–352, Bibcode:1927ZPhy...44..326K, doi:10.1007/BF01391200.

Does quantum mechanics show that the universe is pixelated?

This image represents Bekenstein’s approach to what became Holographic Theory. It started off as Black Hole physics, then turned into thermodynamics. Bekenstein then turned it into information.It was based on an equation by Bekenstien, after a few generations evolved to:In this equation, N refers to bits of information. However, as of yet that remains undefined, but I will derive what a ‘bit’ of information is a little further on.Lp is the Planck length (10^-35 meters), tp will be the Planck unit of time (10^-44 seconds). These are the smallest slice of space and of time possible in normal space-time. They are the Zero Point for space and time, in a quazi logical way.For those who suspect space-time is infinitely divisible, not quantized, see my former discussion at Bill Bray's answer to Why is it impossible for anything to be smaller than the Planck length?Where N refers to the number of ‘bits’ of information and AΩ is our world-sheet, as we fill that empty void with information (N) we inadvertently create the world-sheet AΩ. In order to derive the value of what 1 ‘bit’ of information is, we can simply do this:Setting ‘c’ as a natural number and equal to 1: Lp = tpthenGiven Einstein’s filed equationsreduces the geometry of space-time toNoting that G on the left referring to the geometry of G(uv), as well as G being on the right hand side of the equation, leads to a self-similar (fractal)we end up withThe geometry of space-time is an emergent phenomenon of Information, as a fractal.Also, the term T(uv) is supposed to represent the tensor that describes the forceful bending of space-time. However, since its internal components (uv) are on both sides of the equation (u and v represent rows and columns of values) these values are also fractals. Thus, the term (the tensor) is a highly localized phenomenon. This is what Wheeler was searching for but never found. The tensor is a fractal that starts nearly flat, then becomes increasingly fracked. THIS DOES NOT HAPPEN BECAUSE OF MASS - IT HAPPENS BECAUSE OF THE DENOMINATOR, N. AKA, the presence of information.The error for the past century was to assume that because mass and gravitation seem to always be in the same place, that there is a needy relationship. However, the recent discovery that Gravity Waves exist by the LIGO interferometer proves Wheeler’s description: Gravitation without mass, as he was referring to Gravity Waves. The Gravity Wave has information present, but no information that describes mass.If there were information in the gravity wave that described mass, then the gravity wave would possess mass, it does not. LIGO is an interferometer, just like the Michelson moerley, that functions by detecting its own change of state under a Schwarzschild transformation in General Relativity, which incontrovertible dismisses all prior art regarding frame of reference in General Relativity. All mythos regarding falling into a black hole, spinning black holes, black holes with magnetic fields, Hawking radiation, are collectively dismissed, and no evidence has ever supported such null hypotheses.The urban myth, mass brings about gravity and gravity tells mass where to go is incorrect. Gravitation is a fractal that results from the presence of information that may or may not describe mass. A Gravity Wave represents the fractal above, but the information in the wave does not describe the presence of mass.The termCan only be interpreted as:However, a triangle is impossible because of the hypotenuse and height not being integers of LpWe run into the same problem with a cube (your pixel) because it is wrought with non-integers of LpA circle has pi (not even a rational number)Since every possible shape is wrought with values that are not integers of Lp, no shape is possible on a Planck Scale.On a Planck scale, space-time is shapeless. In 1957 Wheeler derived the equations for Lp and tp, in the study of the propagation of Gravity Waves, and found what he referred to as the ‘Quantum Foam.’ It is a turbulent, dynamic shapeless domain where virtual particles pop in and out f existence at a very high rate.In 2004 Wilczek (a friend of Wheeler’s) earned the Nobel in Physics for measuring the effect of the Quantum Foam on the Strong and Weak forces.As for ‘pixelation,’ we can only regard the cosmos as a 2-dimensional rendering of a 4-dimensional facade. And in this 2-dimensional, holographic construct, time is not a valid dimension.That statement is fully compatible with the AdS description.This is Holographic Theory. From Holographic Theory we are finding emergent space-time, mass-energy, and the forces of nature. For instance, above we saw the short version of how space-time actually emerges from Information along with its geometry (gravitation). Note that we are on our way to a Quantum Description of Gravitation without any Higg’s Bosons. In fact, if the Higg’s really does exist (I’m not a ‘believer’) it is emergent from the description above.Mass-energy arises from quantum entanglement and superposition within this geometry we have made out of our world-sheet AΩ. Let me find that - wait; here it is:If we take into account Wheeler’s Space-time Foam on a quantum scale, [John Archibald Wheeler with Kenneth Ford. Geons, Black Holes, and Quantum Foam.1995 ISBN 0-393-04642-7.] we might conclude that as a part of this foamy characteristic of space-time on a quantum scale is the motion of a macroscopic object progressing forward in this go-stop-go fashion described above at v=c and v=0. In today’s vernacular we might say that the object were moving as though pixelated, and as we back out from the quantum to the macroscopic we no longer see the pixelated but a ‘normal’ progression of a macroscopic object. However, there can be no ‘pixelation’ on a quantum scale, as I will describe later on, because of the foamy characteristic of space-time on a quantum scale. In fact, there can be no shape, again, this will be described.Wheeler first describes the Quantum Foam as early as 1955 [Wheeler, J. A. (January 1955). "Geons". Physical Review. 97 (2): 511. Bibcode:1955PhRv...97..511W. doi:10.1103/PhysRev.97.511]The Quantum Foam in short, is an extension of the existence of Virtual Particles that come into existence via the Uncertainty Principle. The very brief and over simplified description of this Quantum Foam is that in any volume of empty space, virtual particle-antiparticle pairs are being created and annihilated constantly. The other characteristic is that space-time on a Planck scale can conform to no shape, because every plausible shape has characteristics that are not integer values of the Planck interval. We discussed this characteristic at length in The Holographic Principle of Quantum Mechanics. These particle-antiparticle pairs arise from the Quantum Electro Dynamic Vacuum Energy, that is, they 'borrow' energy from Heisenberg's Uncertainty principle. The virtual particle-antiparticle pairs exist for extremely brief periods of time, and recombine to annihilate themselves back into nothingness again. This occurs at a very high rate of speed and is constant, on the order of 10-44 seconds. We say that space, therefore, has foam like character that is referred to as the Quantum Foam. The Quantum foam plays a direct role in the Quantum Electrodynamic Vacuum Energy, on the order of 10120 joules of energy per cubic centimeter of absolute nothingness (described in the glossary).However, borrow is a metaphor. They merely exist for a short time.The effect they have on a Planck scale (of size, 10-35 meters) is to curve Space-Time in such a way as to give space-time a 'foamy' characteristic. A few -1.Thorne, Kip S. (1994). Black Holes and Time Warps.2.W. W. Norton. pp. 494–496. ISBN 0-393-31276-3.3.Ian H., Redmount; Wai-Mo Suen (1994). "Quantum Dynamics of Lorentzian Space-time Foam". Physical Review D 49: 5199. Doi: 10.1103/PhysRevD.49.5199. arXiv:gr-qc/93090174.Moyer, Michael (17 January 2012). "Is Space Digital?:". Scientific American. Retrieved 3 February 2013.5.Baez, John (2006-10-08). "What's the Energy Density of the Vacuum?". Retrieved 2007-12-18.6.John Archibald Wheeler with Kenneth Ford. Geons, Black Holes, and Quantum Foam. 1995 ISBN 0-393-04642-7This describes the ‘quantum foam,’ a characteristic of space-time that describes the dynamic structure on the Planck scale. There is a short review of this by wilczek, who actually measured the quantum foam’s effect on the strong and weak forces (for which he earned a Nobel, at 48 minutes into: https://youtu.be/914jzZ4LXcUIn this 4Lp^2, we either have information in it, or there is no information in it. That is, it is a shapeless bit of space-time (but we use the trigonal pyramid for visual purposes) is either empty or filled.If there is information in it, it by definition is entangled with some other bit of information somewhere in the universe; because they (we’ll call the two N and N’) were created as a particle/antiparticle pair vie the HUP. However, they do not have to be a particle/antiparticle pair. As we saw with the Gravity Wave, the information (N) does not have to describe mass. It will describe energy, but although we can stick the energy in an equation (E=mc^2, the Compton Wavelength, DeBroglie Wavelength, and so on) that doesn’t mean it actually has mass. In fact, it does suggest momentum either. As an example, a Gravity Wave can and does (see Lin-Shu Density Wave) keep a spiral galaxy and all of the massive stars in place, it possesses neither mass nor momentum.As the distance between these two bits N and N’ increases, the probability that they are quantum entangled decreases, because the wave function in the HUP limits the amount of time such a thing can exist, and thus the distance. If N is entangled with N’, then each has an element a or its symmetric partner a’.We’ll call the information in N has two possibilities (such as spin) a and a’. We’ll use a real particle for a moment and say they are an electron positron pair. Spin +1/2 is a, spin -1/2 is a’. So, each N can have a or a’. Also, N’ can have a or a’. So I’ll use an over simplified braket notation and refer to the systems as<a|N|a’> and <a|N’|a’>If N has a, then N’ has a’, If N has a’, then N’ has a. It’s either/or.If there is no N’ then there is no space-time in this scenario. If there is an N’, then time limits us to the probability that it contains either a or a’. From this time constraint, the number of possible superpositions is defined, and so the size of our world sheet, AΩ.That is, as the number of superpositions increases, we have entropy, as the number of superpositions decreases, we have Ordiny. Gravitation is unidirectional Ordiny. So is a magnetic dipole. The Strong Force has two components, the Internal Strong Force that binds hypothetical ‘quarks’ together; Ordiny, and the Intermediate Strong Force (mediated by mesons) the binds protons and neutrons together, more Ordiny.The Weak force can be viewed as a form of entropy, as a W boson escapes the nucleus, decaying into an electron and electron-antineutrino.This interplay between entropy and riding is the direct observation of force, and displaced the mythos of delta S as some ‘arrow of time' which is a non sequitur. A 19th century gas law does not describe the visible cosmos. The notion that entropy is ‘the loss of information regarding the Microsystems of a system' is obviously a pure technological limitation, not a priority of nature. It is less of a limitation every year, in fact. Every limit, every unexplained thing becomes the magic black box for physics, sad.The number of available superposition describes the entropy vs ordiny that yields force. this I laid out in a series of papers on Researchgate.For the most part, the forces of nature represent Ordiny. Entropy occurs under extreme conditions only, such as the Big Bang and Black Holes. Irreversible entropy that is.To simplify again, the surface of our world-sheet AΩ is defined by the number of Lp^2 available on this 2-dimensional surface. As the number increases, the number of possible superpositions increases and entropy emerges. If the number decreases, the number of possible superpositions decreases, and Ordiny emerges.This is how space-time is then an emergent form from information entropy vs. Ordiny. You may also note that ‘c’ is not a velocity, it defines the relationship between the world-sheet AΩ with respect to Lp and tp (space and time). It is not a ‘speed limit’ it is the definition of space-time. The ‘speed limit’ is actually the result of c=1Lp/1tp.At such time you are at c, you are superposition across the AdS horizon. There is no velocity other than c, only c exists, all else is a facade velocity. That was derived by Einstein Maric in the original 1905 paper, but no one has read it, that is true. There are only 50 citations to it, none in a century. There are millions of citations to papers about it, none of those papers have read the original, which bears no resemblance to modern convention whatsoever. So I wrote a paper breaking all convention and showing images of the original, and it has a jaw dropping response in physics. QFT physicists think I am Satan, because I do not violate axiom and theorem, introduce un observable dimensionality of the gods to explain clearly observable things, with math that isn't upside down.by convention, the constancy of c is purely rhetorical. However, it is the associative property of addition in the 1905 document. As the acid test, find the derivation of the constancy of c, that is in an observable dimension set and real.1.Arntzenius, Frank. (2000) “Are there Really Instantaneous Velocities?”, The Monist 83, pp. 187-208.2.Barnes, J. (1982). The Presocratic Philosophers, Routledge & Kegan Paul:3.Barrow, John D. (2005). The Infinite Book: A Short Guide to the Boundless, Timeless and Endless, Pantheon Books, New York.4.Benacerraf, Paul (1962). “Tasks, Super-Tasks, and the Modern Eleatics,” The Journal of Philosophy, 59, pp. 765-784.5.Bergson, Henri (1946). Creative Mind, translated by M. L. Andison. Philosophical Library: New York.6.Black, Max (1950-1951). “Achilles and the Tortoise,” Analysis 11, pp. 91-101.7.Cajori, Florian (1920). “The Purpose of Zeno’s Arguments on Motion,” Isis, vol. 3, no. 1, pp. 7-20.8.Cantor, Georg (1887). "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen." Bihang till Kongl. Svenska Vetenskaps-Akademien Handlingar , Bd. 11 (1886-7), article 19. P. A. Norstedt & Sôner: Stockholm.9.Chihara, Charles S. (1965). “On the Possibility of Completing an Infinite Process,” Philosophical Review 74, no. 1, p. 74-87.10.Copleston, Frederick, S.J. (1962). “The Dialectic of Zeno,” chapter 7 of A History of Philosophy, Volume I, Greece and Rome, Part I, Image Books: Garden City.11.Dainton, Barry. (2010). Time and Space, Second Edition, McGill-Queens University Press: Ithaca.12.Dauben, J. (1990). Georg Cantor, Princeton University Press: Princeton.13.De Boer, Jesse (1953). “A Critique of Continuity, Infinity, and Allied Concepts in the Natural Philosophy of Bergson and Russell,” in Return to Reason: Essays in Realistic Philosophy, John Wild, ed., Henry Regnery Company: Chicago, pp. 92-124.14.Diels, Hermann and W. Kranz (1951). Die Fragmente der Vorsokratiker, sixth ed., Weidmannsche Buchhandlung: Berlin.15.Dummett, Michael (2000). “Is Time a Continuum of Instants?,” Philosophy, 2000, Cambridge University Press: Cambridge, pp. 497-515.16.Earman J. and J. D. Norton (1996). “Infinite Pains: The Trouble with Supertasks,” in Paul Benacerraf: the Philosopher and His Critics, A. Morton and S. Stich (eds.), Blackwell: Cambridge, MA, pp. 231-261.17.Feferman, Solomon (1998). In the Light of Logic, Oxford University Press, New York.18.Freeman, Kathleen (1948). Ancilla to the Pre-Socratic Philosophers, Harvard University Press: Cambridge, MA. Reprinted in paperback in 1983.19.Grünbaum, Adolf (1967). Modern Science and Zeno’s Paradoxes, Wesleyan University Press: Middletown, Connecticut.20.Grünbaum, Adolf (1970). “Modern Science and Zeno’s Paradoxes of Motion,” in (Salmon, 1970), pp. 200-250.21.Hamilton, Edith and Huntington Cairns (1961). The Collected Dialogues of Plato Including the Letters, Princeton University Press: Princeton.22.Harrison, Craig (1996). “The Three Arrows of Zeno: Cantorian and Non-Cantorian Concepts of the Continuum and of Motion,” Synthese, Volume 107, Number 2, pp. 271-292.23.Heath, T. L. (1921). A History of Greek Mathematics, Vol. I, Clarendon Press: Oxford. Reprinted 1981.24.Hintikka, Jaakko, David Gruender and Evandro Agazzi. Theory Change, Ancient Axiomatics, and Galileo’s Methodology, D. Reidel Publishing Company, Dordrecht.25.Kirk, G. S., J. E. Raven, and M. Schofield, eds. (1983). The Presocratic Philosophers: A Critical History with a Selection of Texts, Second Edition, Cambridge University Press: Cambridge.26.Maddy, Penelope (1992) “Indispensability and Practice,” Journal of Philosophy 59, pp. 275-289.27.Matson, Wallace I (2001). “Zeno Moves!” pp. 87-108 in Essays in Ancient Greek Philosophy VI: Before Plato, ed. by Anthony Preus, State University of New York Press: Albany.28.McCarty, D.C. (2005). “Intuitionism in Mathematics,” in The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, Oxford University Press, Oxford, pp. 356-86.29.McLaughlin, William I. (1994). “Resolving Zeno’s Paradoxes,” Scientific American, vol. 271, no. 5, Nov., pp. 84-90.30.Owen, G.E.L. (1958). “Zeno and the Mathematicians,” Proceedings of the Aristotelian Society, New Series, vol. LVIII, pp. 199-222.31.Posy, Carl. (2005). “Intuitionism and Philosophy,” in The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, Oxford University Press, Oxford, pp. 318-54.32.Proclus (1987). Proclus’ Commentary on Plato’s Parmenides, translated by Glenn R. Morrow and John M. Dillon, Princeton University Press: Princeton.33.Rescher, Nicholas (2001). Paradoxes: Their Roots, Range, and Resolution, Carus Publishing Company: Chicago.34.Pages 94-102 apply the Standard Solution to all of Zeno's paradoxes. Rescher calls the Paradox of Alike and Unlike the "Paradox of Differentiation."35.Rivelli, Carlo (2017). Reality is Not What It Seems: The Journey to Quantum Gravity, Riverhead Books: New York.36.Rivelli's chapter 6 explains how the theory of loop quantum gravity provides a new solution to Zeno's Paradoxes that is more in tune with the intuitions of Democratus because it rejects the assumption that a bit of space can always be subdivided.37.Russell, Bertrand (1914). Our Knowledge of the External World as a Field for Scientific Method in Philosophy, Open Court Publishing Co.: Chicago.38.Russell champions the use of contemporary real analysis and physics in resolving Zeno’s paradoxes.39.Salmon, Wesley C., ed. (1970). Zeno’s Paradoxes, The Bobbs-Merrill Company, Inc.: Indianapolis and New York. Reprinted in paperback in 2001.40.Szabo, Arpad (1978). The Beginnings of Greek Mathematics, D. Reidel Publishing Co.: Dordrecht.41.Tannery, Paul (1885). “‘Le Concept Scientifique du continu: Zenon d’Elee et Georg Cantor,” pp. 385-410 of Revue Philosophique de la France et de l’Etranger, vol. 20, Les Presses Universitaires de France: Paris.42.Tannery, Paul (1887). Pour l’Histoire de la Science Hellène: de Thalès à Empédocle, Alcan: Paris. 2nd ed. 1930.43.Thomson, James (1954-1955). “Tasks and Super-Tasks,” Analysis, XV, pp. 1-13.44.Tiles, Mary (1989). The Philosophy of Set Theory: An Introduction to Cantor’s Paradise, Basil Blackwell: Oxford.45.Vlastos, Gregory (1967). “Zeno of Elea,” in The Encyclopedia of Philosophy, Paul Edwards (ed.), The Macmillan Company and The Free Press: New York.46.White, M. J. (1992). The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Clarendon Press: Oxford.47.Wisdom, J. O. (1953). “Berkeley’s Criticism of the Infinitesimal,” The British Journal for the Philosophy of Science, Vol. 4, No. 13, pp. 22-25.48.Wolf, Robert S. (2005). A Tour Through Mathematical Logic, The Mathematical Association of America: Washington, DC.49.Aristotle (1930) [ancient]. "Physics," from The Works of Aristotle, Vol. 2, (R. P. Hardie & R. K. Gaye, translators, W.D. Ross, ed.), Oxford, UK:Clarendon, see [1], accessed 14 October 2015.50.Laertius, Diogenes (about 230 CE). "Pyrrho". Lives and Opinions of Eminent Philosophers IX. passage 72. ISBN1-116-71900-251.Sudarshan, E.C.G.; Misra, B. (1977). "The Zeno's paradox in quantum theory". Journal of Mathematical Physics 18 (4): 756–763.52.T. Nakanishi, K. Yamane, and M. Kitano: Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping Phys. Rev. A 65, 013404 (2001).53.Fischer, M.; Gutiérrez-Medina, B.; Raizen, M. (2001). "Observation of the Quantum Zeno and Anti-Zeno Effects in an Unstable System". Physical Review Letters 87 (4): 040402.54.M. C. Fischer, B. Guti´errez-Medina, and M. G. Raizen, Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (February 1, 2008)55.Weyl, H. (1928), Gruppentheorie und Quantenmechanik, Leipzig: Hirzel56.Searchable Online Accommodation Research; Light Sensitivity.57.SOAR; Employees with Epilepsy.58.SOAR; Employees with Lupus.59.Shadick NA, Phillips CB, Sangha O; et al. (December 1999). "Musculoskeletal and neurologic outcomes in patients with previously treated Lyme disease". Annals of Internal Medicine 131 (12): 919–26. doi:10.7326/0003-4819-131-12-199912210-00003. PMID 1061064260.Canadian Center for Occupation Health and Safety; Lighting Ergonomics, Light Flicker.61.Furuta, Aya (2012), "One Thing Is Certain: Heisenberg's Uncertainty Principle Is Not Dead", Scientific American.62.Ozawa, Masanao (2003), "Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement", Physical Review A, 67 (4): 42105, arXiv:quant-ph/0207121 Freely accessible, Bibcode:2003PhRvA..67d2105O, doi:10.1103/PhysRevA.67.04210563.Loudon, Rodney, The Quantum Theory of Light (Oxford University Press, 2000), ISBN 0-19-850177-364.D. F. Walls and G.J. Milburn, Quantum Optics, Springer Berlin 199465.C W Gardiner and Peter Zoller, "Quantum Noise", 3rd ed, Springer Berlin 200466.D. Walls, Squeezed states of light, Nature 306, 141 (1983)67.R. E. Slusher et al., Observation of squeezed states generated by four wave mixing in an optical cavity, Phys. Rev. Lett. 55 (22), 2409 (1985)68.Breitenbach, G.; Schiller, S.; Mlynek, J. (29 May 1997). "Measurement of the quantum states of squeezed light" (PDF). Nature. 387 (6632): 471–475. Bibcode:1997Natur.387..471B. doi:10.1038/387471a0.69.G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light", Nature, 387, 471 (1997)70.Entanglement evaluation with Fisher information - http://arxiv.org/pdf/quant-ph/06...71.A. I. Lvovsky, "Squeezed light," [1401.4118] Squeezed light72.L.-A. Wu, M. Xiao, and H. J. Kimble, "Squeezed states of light from an optical parametric oscillator," J. Opt. Soc. Am. B 4, 1465 (1987).73.Heidmann, A.; Horowicz, R.; Reynaud, S.; Giacobino, E.; Fabre, C.; Camy, G. (1987). "Observation of Quantum Noise Reduction on Twin Laser Beams". Physical Review Letters. 59: 2555. Bibcode:1987PhRvL..59.2555H. doi:10.1103/physrevlett.59.2555.74.A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, "On-Chip Optical Squeezing," Physical Review Applied 3, 044005 (2015). [1309.6371] On-Chip Optical Squeezing75.Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.; Peng, K. C. (1992). "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables". Phys. Rev. Lett. 68: 3663. Bibcode:1992PhRvL..68.3663O. doi:10.1103/physrevlett.68.3663. PMID 10045765.76.Villar, A. S.; Cruz, L. S.; Cassemiro, K. N.; Martinelli, M.; Nussenzveig, P. (2005). "Generation of Bright Two-Color Continuous Variable Entanglement". Phys. Rev. Lett. 95: 243603. arXiv:quant-ph/0506139 Freely accessible. Bibcode:2005PhRvL..95x3603V. doi:10.1103/physrevlett.95.243603. PMID 16384378.77.Grote, H.; Danzmann, K.; Dooley, K. L.; Schnabel, R.; Slutsky, J.; Vahlbruch, H. (2013). "First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory". Phys. Rev. Lett. 110: 181101. arXiv:1302.2188 Freely accessible. Bibcode:2013PhRvL.110r1101G. doi:10.1103/physrevlett.110.181101.78.The LIGO Scientific Collaboration (2011). "A gravitational wave observatory operating beyond the quantum shot-noise limit". Nature Physics. 7: 962. arXiv:1109.2295 Freely accessible. Bibcode:2011NatPh...7..962L. doi:10.1038/nphys2083.79.Wineland, D. J.; Bollinger, J. J.; Heinzen, D. J. (1 July 1994). "Squeezed atomic states and projection noise in spectroscopy". Physical Review A. 50 (2): 67–88. Bibcode:1994PhRvA..50...67W. doi:10.1103/PhysRevA.50.67.80.Machida, S.; Yamamoto, Y.; Itaya, Y. (9 March 1987). "Observation of amplitude squeezing in a constant-current driven semiconductor laser". Physical Review Letters. 58 (10): 1000–1003. Bibcode:1987PhRvL..58.1000M. doi:10.1103/PhysRevLett.58.1000. PMID 10034306.81.O. V. Misochko, J. Hu, K. G. Nakamura, "Controlling phonon squeezing and correlation via one- and two-phonon interference," [1011.2001] Controlling phonon squeezing and correlation via one- and two-phonon interference82.Ma, Jian; Wang, Xiaoguang; Sun, C.P.; Nori, Franco (December 2011). "Quantum spin squeezing". Physics Reports. 509 (2–3): 89–165. arXiv:1011.2978 Freely accessible. Bibcode:2011PhR...509...89M. doi:10.1016/j.physrep.2011.08.003.83.Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A. (11 January 2016). "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms". Nature. 529: 505–8. Bibcode:2016Natur.529..505H. doi:10.1038/nature16176. PMID 26751056.84.Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K. (4 March 2016). "Deterministic Squeezed States with Collective Measurements and Feedback". Physical Review Letters. 116 (9): 093602. arXiv:1512.02150 Freely accessible. Bibcode:2016PhRvL.116i3602C. doi:10.1103/PhysRevLett.116.093602. PMID 26991175.85.Bohnet, J. G.; Cox, K. C.; Norcia, M. A.; Weiner, J. M.; Chen, Z.; Thompson, J. K. (13 July 2014). "Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit". Nature Photonics. 8 (9): 731–736. arXiv:1310.3177 Freely accessible. Bibcode:2014NaPho...8..731B. doi:10.1038/nphoton.2014.151.86.Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (17 April 2014). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters. 112 (15): 155304. arXiv:1403.4542 Freely accessible. Bibcode:2014PhRvL.112o5304L. doi:10.1103/PhysRevLett.112.155304. PMID 24785048.87.Rini, Matteo (September 6, 2016). "Synopsis: A Tight Squeeze". Physics.88.Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman (2016-09-06). "Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency". Physical Review Letters. 117 (11): 110801. Bibcode:2016PhRvL.117k0801V. doi:10.1103/PhysRevLett.117.110801. PMID 27661673.89.Eberle, Tobias; Steinlechner, Sebastian; Bauchrowitz, Jöran; Händchen, Vitus; Vahlbruch, Henning; Mehmet, Moritz; Müller-Ebhardt, Helge; Schnabel, Roman (22 June 2010). "Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection". Physical Review Letters. 104 (25): 251102. arXiv:1007.0574 Freely accessible. Bibcode:2010PhRvL.104y1102E. doi:10.1103/PhysRevLett.104.251102. PMID 20867358.90.Polzik, E. S. (1992-01-01). "Spectroscopy with squeezed light". Physical Review Letters. 68 (20): 3020–3023. Bibcode:1992PhRvL..68.3020P. doi:10.1103/PhysRevLett.68.3020.91.Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletić, Vladan (25 June 2010). "Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock". Physical Review Letters. 104 (25): 250801. arXiv:1004.1725 Freely accessible. Bibcode:2010PhRvL.104y0801L. doi:10.1103/PhysRevLett.104.250801. PMID 20867356.92.Louchet-Chauvet, Anne; Appel, Jürgen; Renema, Jelmer J; Oblak, Daniel; Kjaergaard, Niels; Polzik, Eugene S (28 June 2010). "Entanglement-assisted atomic clock beyond the projection noise limit". New Journal of Physics. 12 (6): 065032. arXiv:0912.3895 Freely accessible. Bibcode:2010NJPh...12f5032L. doi:10.1088/1367-2630/12/6/065032.93.Kitagawa, Masahiro; Ueda, Masahito (1 June 1993). "Squeezed spin states". Physical Review A. 47 (6): 5138–5143. Bibcode:1993PhRvA..47.5138K. doi:10.1103/PhysRevA.47.5138.94.Braunstein, Samuel L.; van Loock, Peter (29 June 2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77 (2): 513–577. arXiv:quant-ph/0410100 Freely accessible. Bibcode:2005RvMP...77..513B. doi:10.1103/RevModPhys.77.513.95.Furusawa, A. (23 October 1998). "Unconditional Quantum Teleportation". Science. 282 (5389): 706–709. Bibcode:1998Sci...282..706F. doi:10.1126/science.282.5389.706.96.Menicucci, Nicolas C.; Flammia, Steven T.; Pfister, Olivier (22 September 2008). "One-Way Quantum Computing in the Optical Frequency Comb". Physical Review Letters. 101 (13): 13501. arXiv:0804.4468 Freely accessible. Bibcode:2008PhRvL.101m0501M. doi:10.1103/PhysRevLett.101.130501. PMID 18851426.97.Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters. 84: 1–5. arXiv:quant-ph/9903047 Freely accessible. Bibcode:2000PhRvL..84....1K. doi:10.1103/PhysRevLett.84.1.98.Ionicioiu, R.; Terno, D. R. (2011). "Proposal for a quantum delayed-choice experiment". Phys. Rev. Lett. 107 (23): 230406. arXiv:1103.0117 Freely accessible. Bibcode:2011PhRvL.107w0406I. doi:10.1103/physrevlett.107.230406. PMID 22182073.99.Jump up ^ Greene, Brian (2004). The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Alfred A. Knopf. p. 198. ISBN 0-375-41288-3.100.Octavio Obreg´on, Superstatistics and Gravitation, Entropy 2010, 12, 2067-2076; doi:10.3390/e12092067101.Verlinde, E.P. On the origin of gravity and the laws of Newton. arXiv 2010, 1001.0785.102.Beckenstein, Black Holes and Entropy, Phy Rev D 7(8) 15April 1973103.Y Wang, J M Kratochvil, A Linde, and M Shmakova, Current Observational Constraints on Cosmic Doomsday. JCAP 0412 (2004) 006, astro-ph/0409264104.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955105.Heisenberg, W. (1927), "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", Zeitschrift für Physik (in German), 43 (3–4): 172–198, Bibcode:1927ZPhy...43..172H, doi:10.1007/BF01397280.. Annotated pre-publication proof sheet of Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, March 21, 1927.106.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955107.Daniel M. Greenberger, Conceptual Problems Related to Time and Mass in Quantum Theory, Dept. of Physics, CCNY, New York, NY, 10031,USA. Sep 2010108.V. Bargmann, Ann. Math. 59, 1(1954).109.Roberto Colella, Albert W. Overhauser, Samuel A. Werner. “Observation of Gravitationally Induced Quantum Interference”, Physical Review Letters, 34, 1472 (1975). Abstract.110.Magdalena Zych, Fabio Costa, Igor Pikovski, Časlav Brukner. “Quantum interferometric visibility as a witness of general relativistic proper time”, Nature Communications, 2, 505 (2011). Abstract. 2Physics Article.111.Yair Margalit, Zhifan Zhou, Shimon Machluf, Daniel Rohrlich, Yonathan Japha, Ron Folman. “A self-interfering clock as a 'which path' witness”, published online in 'Science Express' (August 6, 2015). Abstract. 2Physics Article.112.Igor Pikovski, Magdalena Zych, Fabio Costa, Časlav Brukner, “Universal decoherence due to gravitational time dilation”, Nature Physics ,11, 668-672 (2015). Abstract.113.Max Born, "Einstein's Theory of Relativity," Dover, 1962, pp. 318-320114.Carsten Robens, Wolfgang Alt, Dieter Meschede, Clive Emary, and Andrea Alberti, “Ideal Negative Measurements in Quantum Walks Disprove Theories Based on Classical Trajectories,” Phys. Rev. X 5, 011003 (2015)115.A. J. Leggett and A. Garg, “Quantum Mechanics Versus Macroscopic Realism: Is the Flux There When Nobody Looks?,” Phys. Rev. Lett. 54, 857 (1985)116.C. Emary, N. Lambert, and F. Nori, “Leggett-Garg Inequalities,” Rep. Prog. Phys. 77, 016001 (2014)117.M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G. White, and G. J. Pryde, “Violation of the Leggett-Garg Inequality with Weak Measurements of Photons,” Proc. Natl. Acad. Sci. 108, 1256 (2011)118.G. C. Knee et al., “Violation of a Leggett-Garg Inequality with Ideal Non-Invasive Measurements,” Nature Commun. 3, 606 (2012)119.G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a Temporal Bell Inequality for Single Spins in a Diamond Defect Center,” Phys. Rev. Lett. 107, 090401 (2011)120.A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, “Experimental Violation of a Bell’s Inequality in Time with Weak Measurement,” Nature Phys. 6, 442 (2010)121.S. Nimmrichter and K. Hornberger, “Macroscopicity of Mechanical Quantum Superposition States,” Phys. Rev. Lett. 110, 160403 (2013)122.K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackermüller, S. Nimmrichter, I. V. Goldt, O. Boltalina, and M. Arndt, “Theory and Experimental Verification of Kapitza–Dirac–Talbot–Lau Interferometry,” New J. Phys. 11, 043032 (2009)123.Pound, R. V.; Rebka Jr. G. A. (November 1, 1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (9): 439–441. Bibcode:1959PhRvL...3..439P. doi:10.1103/PhysRevLett.3.439.124.Cf. Misner, Thorne & Wheeler 1973, §20.4 (‘Gravitation’)125.Physics for Scientists and Engineers, Volume 2, page 1073 - Lawrence S. Lerner - Science – 1997126.McGlinn, William D. (2004), Introduction to relativity, JHU Press, p. 43, ISBN 0-8018-7047-X Extract of page 43127.E. F. Taylor; J. A. Wheeler (1992), Spacetime Physics, second edition, New York: W.H. Freeman and Company, pp. 248–249, ISBN 0-7167-2327-1128.L. B. Okun', The concept of mass (mass, energy, relativity), Institute of Theoretical and Experimental Physics, Moscow Usp.Fiz.Nauk 158, 511-530 (July 1989)129.Erik Verlinde, On the Origin of Gravity and the Laws of Newton; arXiv:1001.0785v1 [hep-th] 6 Jan 2010130.Rees, Martin (May 3, 2001). Just Six Numbers: The Deep Forces That Shape The Universe. New York, NY: Basic Books; First American edition. p. 4.131.Gribbin. J and Rees. M, Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology p. 7, 269, 1989, ISBN 0-553-34740-3132.Davis, Paul (2007). Cosmic Jackpot: Why Our Universe Is Just Right for Life. New York, NY: Orion Publications. p. 2. ISBN 0618592261.133.Stephen Hawking, 1988. A Brief History of Time, Bantam Books, ISBN 0-553-05340-X, p. 7, 125.134.Lawrence Joseph Henderson, The fitness of the environment: an inquiry into the biological significance of the properties of matter The Macmillan Company, 1913135.R. H. Dicke (1961). "Dirac's Cosmology and Mach's Principle". Nature. 192 (4801): 440–441. Bibcode:1961Natur.192..440D. doi:10.1038/192440a0.136.Heilbron, J. L. The Oxford guide to the history of physics and astronomy, Volume 10 2005, p. 8137.Profile of Fred Hoyle at OPT Archived 2012-04-06 at the Wayback Machine.. Telescopes, Astronomy Cameras, Telescope Mounts & Accessories. Retrieved on 2013-03-11.138.Paul Davies, 1993. The Accidental Universe, Cambridge University Press, p70-71139.MacDonald, J.; Mullan, D. J. (2009). "Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle". Physical Review D. 80 (4): 043507. arXiv:0904.1807 Freely accessible. Bibcode:2009PhRvD..80d3507M. doi:10.1103/physrevd.80.043507.140.Abbott, Larry (1991). "The Mystery of the Cosmological Constant". Scientific American. 3 (1): 78.141.Lemley, Brad. "Why is There Life?". Discover magazine. Retrieved 23 August 2014.142.Adams, Fred C., 2008, “Stars in other universes: stellar structure with different fundamental constants”, Journal of Cosmology and Astroparticle Physics, 08: 10. doi:10.1088/1475-7516/2008/08/010143.Barnes, Luke A., 2012, “The fine-tuning of the universe for intelligent life”, Publications of the Astronomical Society of Australia, 29(4): 529–564. doi:10.1071/AS12015144.Carter, B., 1974, “Large number coincidences and the anthropic principle in cosmology”, in M. S. Longair (ed.), Confrontation of Cosmological Theory with Observational Data, Dordrecht: Reidel, pp. 291–298.145.Collins, R., 2009, “The teleological argument: an exploration of the fine-tuning of the cosmos”, in W. L. Craig and J.P. Moreland (eds.), The Blackwell Companion to Natural Theology, Oxford: Blackwell146.Colyvan M., J. L. Garfield, and G. Priest, 2005, “Problems with the argument from fine-tuning”, Synthese, 145(39): 325–338. doi:10.1007/s11229-005-6195-0147.Donoghue, John F., 2007, “The fine-tuning problems of particle physics and anthropic mechanisms”, in Carr 2007: 231–246. doi:10.1017/CBO9781107050990.017148.Earman, John and Jesus Mosterín, 1999, “A critical look at inflationary cosmology”, Philosophy of Science, 66(1): 1–49. doi:10.1086/392675149.Grinbaum, Alexei, 2012, “Which fine-tuning arguments are fine?”,, Foundations of Physics, 42(5): 615–631. doi:10.1007/s10701-012-9629-9150.Hogan, Craig J., 2000, “Why the universe is just so”, Reviews of Modern Physics, 72: 1149–1161. doi:10.1103/RevModPhys.72.1149151.Landsman, Klaas, 2016, “The fine-tuning argument: exploring the improbability of our own existence”, in K. Landsman and E. van Wolde (eds.), The Challenge of Chance, Heidelberg: Springer152.McCoy, C.D., 2015, “Does inflation solve the hot big bang model’s fine-tuning problems?”, Studies in History and Philosophy of Modern Physics, 51: 23–36. doi:10.1016/j.shpsb.2015.06.002153.Roberts, John T., 2012, “Fine-tuning and the infrared bull’s eye”, Philosophical Studies, 160(2): 287–303. doi:10.1007/s11098-011-9719-0154.Tegmark, Max, 2014, Our Mathematical Universe: My Quest for the Ultimate Nature of Reality, New York: Knopf.155.Tegmark, Max and Martin J. Rees, 1998, “Why is the cosmic microwave background fluctuation level 10−510−5”, The Astrophysical Journal, 499(2): 526–532. doi:10.1086/305673156.Tegmark, Max, Anthony Aguirre, Martin J. Rees, and Frank Wilczek, 2006, “Dimensionless constants, cosmology, and other dark matters”, Physical Review D, 73(2): 023505. doi:10.1103/PhysRevD.73.023505157.Wheeler, J. A. (January 1955). "Geons". Physical Review. 97 (2): 511. Bibcode:1955PhRv...97..511W. doi:10.1103/PhysRev.97.511.158.J S Briggs 2008 J. Phys.: Conf. Ser. 99 012002, A derivation of the time-energy uncertainty relation.159.Jan Hilgevoord, The uncertainty principle for energy and time, Department of History and Foundations of Mathematics and Science, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands, (Received 29 January 1996; accepted 10 June 1996)160.L. MANDELSTAM * and lg. TAMM, THE UNCERTAINTY RELATION BETWEEN ENERGY AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS, Academy of Scioences of the USSR, 1945.161.J. A. Wheeler and R. P., Feynman, “Interaction with the absorber as a mechanism of radiation”, Rev.Mod. Phys. 17 157 (1945).162.J. E. Hogarth, “ Considerations of the Absorber Theory of Radiation”, Proc. Roy. Soc. A267,163.pp365-383 (1962).164.Cramer, John G. (July 1986). "The Transactional Interpretation of Quantum Mechanics". Reviews of Modern Physics. 58 (3): 647–688. Bibcode:1986RvMP...58..647C. doi:10.1103/RevModPhys.58.647.165.Cramer, John G. (February 1988). "An Overview of the Transactional Interpretation" (PDF). International Journal of Theoretical Physics. 27 (2): 227–236. Bibcode:1988IJTP...27..227C. doi:10.1007/BF00670751.166.Cramer, John G. (3 April 2010). "Quantum Entanglement, Nonlocality, Back-in-Time Messages" (PPT). John G. Cramer's Home Page. University of Washington.167.Cramer, John G. (2016). The Quantum Handshake: Entanglement, Nonlocality and Transactions. Springer Science+Business Media. ISBN 978-3319246406.168.Richard Feynman: A life in science, p.273 et seq., John Gribbin, Mary Gribbin, Dutton, Penguin Books, 1997169.M. C. Fischer, B. Guti´errez-Medina, and M. G. Raizen, Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (February 1, 2008)170.Sudarshan, E.C.G.; Misra, B. (1977). "The Zeno's paradox in quantum theory". Journal of Mathematical Physics 18 (4): 756–763.171.T. Nakanishi, K. Yamane, and M. Kitano: Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping Phys. Rev. A 65, 013404 (2001).172.P. Facchi, D. A. Lidar, & S. Pascazio Unification of dynamical decoupling and the quantum Zeno effect Physical Review A 69, 032314 (2004)173.UNIFORM DETERMINATION OF DEATH ACT , Perspectives on Death and Dying 5th Edition, An Online Textbook edited by Dr. Philip A. Pecorino.174.Dr. Leon Kass, in "A Statutory Definition of the Standards for Determining Human Death: An Appraisal and a Proposal," 121 Pa. L. Rev. 87. 1975175.§1. [Determination of Death.] An individual who has sustain ­either (1) irreversible cessation of circulator and respiratory­functions, or (2) irreversible cessation of all functionsof the entire brain, including the brain stem, are dead. A determination of death must be made in accordance with ­accepted medical standards.176.§2. [Uniformity of Construction and Application.] This Act shall be applied and construed to effectuate its general purpose to make uniform the law with respect to the subject of this Act among states enacting it.177.§3. [Short Title.] This Act may be cited as the Uniform Determination of Death Act.178.Capron, A. M. and Kass, L. R. "A Statutory Definition of the Standards for Determining Human Death" University of Pennsylvania Law Review 121:87-118, 1972.179.Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters. 84: 1–5. arXiv:quant-ph/9903047 Freely accessible. Bibcode:2000PhRvL..84....1K. doi:10.1103/PhysRevLett.84.1.180.Scully, Marlan O.; Kai Drühl (1982). "Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics". Physical Review A. 25 (4): 2208–2213. Bibcode:1982PhRvA..25.2208S. doi:10.1103/PhysRevA.25.2208.181.Ma, Zeilinger, et al., "Quantum erasure with causally disconnected choice". See: Quantum erasure with causally disconnected choice "Our results demonstrate that the viewpoint that the system photon behaves either definitely as a wave or definitely as a particle would require faster-than-light communication. Because this would be in strong tension with the special theory of relativity, we believe that such a viewpoint should be given up entirely."182.Peruzzo, et al., "A quantum delayed choice experiment", arXiv:1205.4926v2 [quant-ph] 28 Jun 2012. This experiment uses Bell inequalities to replace the delayed choice devices, but it achieves the same experimental purpose in an elegant and convincing way.183.Zajonc, A. G.; Wang, L. J.; Zou, X. Y.; Mandel, L. (1991). "Quantum eraser". Nature. 353 (6344): 507–508. Bibcode:1991Natur.353..507Z. doi:10.1038/353507b0.184.Herzog, T. J.; Kwiat, P. G.; Weinfurter, H.; Zeilinger, A. (1995). "Complementarity and the quantum eraser" (PDF). Physical Review Letters. 75 (17): 3034–3037. Bibcode:1995PhRvL..75.3034H. doi:10.1103/PhysRevLett.75.3034. PMID 10059478. Archived from the original (PDF) on 24 December 2013. Retrieved 13 February 2014.185.Walborn, S. P.; et al. (2002). "Double-Slit Quantum Eraser". Phys. Rev. A. 65 (3): 033818. arXiv:quant-ph/0106078 Freely accessible. Bibcode:2002PhRvA..65c3818W. doi:10.1103/PhysRevA.65.033818.186.Jacques, Vincent; Wu, E; Grosshans, Frédéric; Treussart, François; Grangier, Philippe; Aspect, Alain; Rochl, Jean-François (2007). "Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment". Science. 315 (5814): 966–968. arXiv:quant-ph/0610241 Freely accessible. Bibcode:2007Sci...315..966J. doi:10.1126/science.1136303. PMID 17303748.187.Chiao, R. Y.; P. G. Kwiat; Steinberg, A. M. (1995). "Quantum non-locality in two-photon experiments at Berkeley". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B. 7 (3): 259–278. arXiv:quant-ph/9501016 Freely accessible. Bibcode:1995QuSOp...7..259C. doi:10.1088/1355-5111/7/3/006. Retrieved 13 February 2014.188.Jordan, T. F. (1993). "Disppearance and reappearance of macroscopic quantum interference". Physical Review A. 48 (3): 2449–2450. Bibcode:1993PhRvA..48.2449J. doi:10.1103/PhysRevA.48.2449.189.Peruzzo, Alberto; Shadbolt, Peter J.; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L. (2012). "A quantum delayed choice experiment". Science. 338 (6107): 634–637. arXiv:1205.4926 Freely accessible. Bibcode:2012Sci...338..634P. doi:10.1126/science.1226719. PMID 23118183.190.Eberhard, Phillippe H.; Ronald R. Ross (1989). "Quantum field theory cannot provide faster-than-light communication". Foundations of Physics Letters. 2 (2): 127–149. Bibcode:1989FoPhL...2..127E. doi:10.1007/BF00696109.191.Benoit B. Mandelbrot, Fractals, Encyclopedia of Statiscal Sciences, DOI: 10.1002/0471667196.ess0816 1977192.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955193.Misner, Thorne, Zurek; John Wheeler, relativity, and quantum information, http://its.caltech.edu/kip/pubsc...194.Bondi, H, Relativity and Common Sense 1980 ISBN-13: 978-0486240213195.Kennard, E. H. (1927), "Zur Quantenmechanik einfacher Bewegungstypen", Zeitschrift für Physik (in German), 44 (4–5): 326–352, Bibcode:1927ZPhy...44..326K, doi:10.1007/BF01391200.

Does everything that exists have a cause? Is there anything that exists (even in regard to quantum mechanics) that doesn’t have a cause?

Causality is a cognitive thing, Bondi.The Heisenberg Uncertainty Principle, the most misunderstood thing in all of physics, refers ONLY TO WAVE FUNCTIONS PRIOR TO DETECTION. At the moment of detection, the HUP is rendered non-sequitur.see Bill Bray's answer to The double slit experiment proved that direct observation altered results. What would happen if the sensors recorded results but the results weren't accessible by humans? For example, what if a computer put an impossible password on the results?The result is that time exists in a state of superposition. This is a fact in QM with too many references to list. Nonetheless, here is a list, most are freely available:Note that time being in superposition is not ‘causality violation,’ it is a statement that makes it clear that the order of events is not fixed. This is best explained in the following papers:R. D. Sorkin, “Quantum Measure Theory and its Interpretation,” in Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, edited by D. Feng, and B.-L. Hu, International Press, Cambridge, MA,1997, pp. 229–251, arXiv:gr-qc/9507057v2and a paper by his studentDavid P. Rideout. Dynamics of Causal Sets. arXiv:gr-qc/0212064v1 14 Dec 2002both are free pdf’s on the web.1.Arntzenius, Frank. (2000) “Are there Really Instantaneous Velocities?”, The Monist 83, pp. 187-208.2.Barnes, J. (1982). The Presocratic Philosophers, Routledge & Kegan Paul:3.Barrow, John D. (2005). The Infinite Book: A Short Guide to the Boundless, Timeless and Endless, Pantheon Books, New York.4.Benacerraf, Paul (1962). “Tasks, Super-Tasks, and the Modern Eleatics,” The Journal of Philosophy, 59, pp. 765-784.5.Bergson, Henri (1946). Creative Mind, translated by M. L. Andison. Philosophical Library: New York.6.Black, Max (1950-1951). “Achilles and the Tortoise,” Analysis 11, pp. 91-101.7.Cajori, Florian (1920). “The Purpose of Zeno’s Arguments on Motion,” Isis, vol. 3, no. 1, pp. 7-20.8.Cantor, Georg (1887). "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen." Bihang till Kongl. Svenska Vetenskaps-Akademien Handlingar , Bd. 11 (1886-7), article 19. P. A. Norstedt & Sôner: Stockholm.9.Chihara, Charles S. (1965). “On the Possibility of Completing an Infinite Process,” Philosophical Review 74, no. 1, p. 74-87.10.Copleston, Frederick, S.J. (1962). “The Dialectic of Zeno,” chapter 7 of A History of Philosophy, Volume I, Greece and Rome, Part I, Image Books: Garden City.11.Dainton, Barry. (2010). Time and Space, Second Edition, McGill-Queens University Press: Ithaca.12.Dauben, J. (1990). Georg Cantor, Princeton University Press: Princeton.13.De Boer, Jesse (1953). “A Critique of Continuity, Infinity, and Allied Concepts in the Natural Philosophy of Bergson and Russell,” in Return to Reason: Essays in Realistic Philosophy, John Wild, ed., Henry Regnery Company: Chicago, pp. 92-124.14.Diels, Hermann and W. Kranz (1951). Die Fragmente der Vorsokratiker, sixth ed., Weidmannsche Buchhandlung: Berlin.15.Dummett, Michael (2000). “Is Time a Continuum of Instants?,” Philosophy, 2000, Cambridge University Press: Cambridge, pp. 497-515.16.Earman J. and J. D. Norton (1996). “Infinite Pains: The Trouble with Supertasks,” in Paul Benacerraf: the Philosopher and His Critics, A. Morton and S. Stich (eds.), Blackwell: Cambridge, MA, pp. 231-261.17.Feferman, Solomon (1998). In the Light of Logic, Oxford University Press, New York.18.Freeman, Kathleen (1948). Ancilla to the Pre-Socratic Philosophers, Harvard University Press: Cambridge, MA. Reprinted in paperback in 1983.19.Grünbaum, Adolf (1967). Modern Science and Zeno’s Paradoxes, Wesleyan University Press: Middletown, Connecticut.20.Grünbaum, Adolf (1970). “Modern Science and Zeno’s Paradoxes of Motion,” in (Salmon, 1970), pp. 200-250.21.Hamilton, Edith and Huntington Cairns (1961). The Collected Dialogues of Plato Including the Letters, Princeton University Press: Princeton.22.Harrison, Craig (1996). “The Three Arrows of Zeno: Cantorian and Non-Cantorian Concepts of the Continuum and of Motion,” Synthese, Volume 107, Number 2, pp. 271-292.23.Heath, T. L. (1921). A History of Greek Mathematics, Vol. I, Clarendon Press: Oxford. Reprinted 1981.24.Hintikka, Jaakko, David Gruender and Evandro Agazzi. Theory Change, Ancient Axiomatics, and Galileo’s Methodology, D. Reidel Publishing Company, Dordrecht.25.Kirk, G. S., J. E. Raven, and M. Schofield, eds. (1983). The Presocratic Philosophers: A Critical History with a Selection of Texts, Second Edition, Cambridge University Press: Cambridge.26.Maddy, Penelope (1992) “Indispensability and Practice,” Journal of Philosophy 59, pp. 275-289.27.Matson, Wallace I (2001). “Zeno Moves!” pp. 87-108 in Essays in Ancient Greek Philosophy VI: Before Plato, ed. by Anthony Preus, State University of New York Press: Albany.28.McCarty, D.C. (2005). “Intuitionism in Mathematics,” in The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, Oxford University Press, Oxford, pp. 356-86.29.McLaughlin, William I. (1994). “Resolving Zeno’s Paradoxes,” Scientific American, vol. 271, no. 5, Nov., pp. 84-90.30.Owen, G.E.L. (1958). “Zeno and the Mathematicians,” Proceedings of the Aristotelian Society, New Series, vol. LVIII, pp. 199-222.31.Posy, Carl. (2005). “Intuitionism and Philosophy,” in The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, Oxford University Press, Oxford, pp. 318-54.32.Proclus (1987). Proclus’ Commentary on Plato’s Parmenides, translated by Glenn R. Morrow and John M. Dillon, Princeton University Press: Princeton.33.Rescher, Nicholas (2001). Paradoxes: Their Roots, Range, and Resolution, Carus Publishing Company: Chicago.34.Pages 94-102 apply the Standard Solution to all of Zeno's paradoxes. Rescher calls the Paradox of Alike and Unlike the "Paradox of Differentiation."35.Rivelli, Carlo (2017). Reality is Not What It Seems: The Journey to Quantum Gravity, Riverhead Books: New York.36.Rivelli's chapter 6 explains how the theory of loop quantum gravity provides a new solution to Zeno's Paradoxes that is more in tune with the intuitions of Democratus because it rejects the assumption that a bit of space can always be subdivided.37.Russell, Bertrand (1914). Our Knowledge of the External World as a Field for Scientific Method in Philosophy, Open Court Publishing Co.: Chicago.38.Russell champions the use of contemporary real analysis and physics in resolving Zeno’s paradoxes.39.Salmon, Wesley C., ed. (1970). Zeno’s Paradoxes, The Bobbs-Merrill Company, Inc.: Indianapolis and New York. Reprinted in paperback in 2001.40.Szabo, Arpad (1978). The Beginnings of Greek Mathematics, D. Reidel Publishing Co.: Dordrecht.41.Tannery, Paul (1885). “‘Le Concept Scientifique du continu: Zenon d’Elee et Georg Cantor,” pp. 385-410 of Revue Philosophique de la France et de l’Etranger, vol. 20, Les Presses Universitaires de France: Paris.42.Tannery, Paul (1887). Pour l’Histoire de la Science Hellène: de Thalès à Empédocle, Alcan: Paris. 2nd ed. 1930.43.Thomson, James (1954-1955). “Tasks and Super-Tasks,” Analysis, XV, pp. 1-13.44.Tiles, Mary (1989). The Philosophy of Set Theory: An Introduction to Cantor’s Paradise, Basil Blackwell: Oxford.45.Vlastos, Gregory (1967). “Zeno of Elea,” in The Encyclopedia of Philosophy, Paul Edwards (ed.), The Macmillan Company and The Free Press: New York.46.White, M. J. (1992). The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Clarendon Press: Oxford.47.Wisdom, J. O. (1953). “Berkeley’s Criticism of the Infinitesimal,” The British Journal for the Philosophy of Science, Vol. 4, No. 13, pp. 22-25.48.Wolf, Robert S. (2005). A Tour Through Mathematical Logic, The Mathematical Association of America: Washington, DC.49.Aristotle (1930) [ancient]. "Physics," from The Works of Aristotle, Vol. 2, (R. P. Hardie & R. K. Gaye, translators, W.D. Ross, ed.), Oxford, UK:Clarendon, see [1], accessed 14 October 2015.50.Laertius, Diogenes (about 230 CE). "Pyrrho". Lives and Opinions of Eminent Philosophers IX. passage 72. ISBN1-116-71900-251.Sudarshan, E.C.G.; Misra, B. (1977). "The Zeno's paradox in quantum theory". Journal of Mathematical Physics 18 (4): 756–763.52.T. Nakanishi, K. Yamane, and M. Kitano: Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping Phys. Rev. A 65, 013404 (2001).53.Fischer, M.; Gutiérrez-Medina, B.; Raizen, M. (2001). "Observation of the Quantum Zeno and Anti-Zeno Effects in an Unstable System". Physical Review Letters 87 (4): 040402.54.M. C. Fischer, B. Guti´errez-Medina, and M. G. Raizen, Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (February 1, 2008)55.Weyl, H. (1928), Gruppentheorie und Quantenmechanik, Leipzig: Hirzel56.Searchable Online Accommodation Research; Light Sensitivity.57.SOAR; Employees with Epilepsy.58.SOAR; Employees with Lupus.59.Shadick NA, Phillips CB, Sangha O; et al. (December 1999). "Musculoskeletal and neurologic outcomes in patients with previously treated Lyme disease". Annals of Internal Medicine 131 (12): 919–26. doi:10.7326/0003-4819-131-12-199912210-00003. PMID 1061064260.Canadian Center for Occupation Health and Safety; Lighting Ergonomics, Light Flicker.61.Furuta, Aya (2012), "One Thing Is Certain: Heisenberg's Uncertainty Principle Is Not Dead", Scientific American.62.Ozawa, Masanao (2003), "Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement", Physical Review A, 67 (4): 42105, arXiv:quant-ph/0207121 Freely accessible, Bibcode:2003PhRvA..67d2105O, doi:10.1103/PhysRevA.67.04210563.Loudon, Rodney, The Quantum Theory of Light (Oxford University Press, 2000), ISBN 0-19-850177-364.D. F. Walls and G.J. Milburn, Quantum Optics, Springer Berlin 199465.C W Gardiner and Peter Zoller, "Quantum Noise", 3rd ed, Springer Berlin 200466.D. Walls, Squeezed states of light, Nature 306, 141 (1983)67.R. E. Slusher et al., Observation of squeezed states generated by four wave mixing in an optical cavity, Phys. Rev. Lett. 55 (22), 2409 (1985)68.Breitenbach, G.; Schiller, S.; Mlynek, J. (29 May 1997). "Measurement of the quantum states of squeezed light" (PDF). Nature. 387 (6632): 471–475. Bibcode:1997Natur.387..471B. doi:10.1038/387471a0.69.G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light", Nature, 387, 471 (1997)70.Entanglement evaluation with Fisher information - http://arxiv.org/pdf/quant-ph/06...71.A. I. Lvovsky, "Squeezed light," [1401.4118] Squeezed light72.L.-A. Wu, M. Xiao, and H. J. Kimble, "Squeezed states of light from an optical parametric oscillator," J. Opt. Soc. Am. B 4, 1465 (1987).73.Heidmann, A.; Horowicz, R.; Reynaud, S.; Giacobino, E.; Fabre, C.; Camy, G. (1987). "Observation of Quantum Noise Reduction on Twin Laser Beams". Physical Review Letters. 59: 2555. Bibcode:1987PhRvL..59.2555H. doi:10.1103/physrevlett.59.2555.74.A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, "On-Chip Optical Squeezing," Physical Review Applied 3, 044005 (2015). [1309.6371] On-Chip Optical Squeezing75.Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.; Peng, K. C. (1992). "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables". Phys. Rev. Lett. 68: 3663. Bibcode:1992PhRvL..68.3663O. doi:10.1103/physrevlett.68.3663. PMID 10045765.76.Villar, A. S.; Cruz, L. S.; Cassemiro, K. N.; Martinelli, M.; Nussenzveig, P. (2005). "Generation of Bright Two-Color Continuous Variable Entanglement". Phys. Rev. Lett. 95: 243603. arXiv:quant-ph/0506139 Freely accessible. Bibcode:2005PhRvL..95x3603V. doi:10.1103/physrevlett.95.243603. PMID 16384378.77.Grote, H.; Danzmann, K.; Dooley, K. L.; Schnabel, R.; Slutsky, J.; Vahlbruch, H. (2013). "First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory". Phys. Rev. Lett. 110: 181101. arXiv:1302.2188 Freely accessible. Bibcode:2013PhRvL.110r1101G. doi:10.1103/physrevlett.110.181101.78.The LIGO Scientific Collaboration (2011). "A gravitational wave observatory operating beyond the quantum shot-noise limit". Nature Physics. 7: 962. arXiv:1109.2295 Freely accessible. Bibcode:2011NatPh...7..962L. doi:10.1038/nphys2083.79.Wineland, D. J.; Bollinger, J. J.; Heinzen, D. J. (1 July 1994). "Squeezed atomic states and projection noise in spectroscopy". Physical Review A. 50 (2): 67–88. Bibcode:1994PhRvA..50...67W. doi:10.1103/PhysRevA.50.67.80.Machida, S.; Yamamoto, Y.; Itaya, Y. (9 March 1987). "Observation of amplitude squeezing in a constant-current driven semiconductor laser". Physical Review Letters. 58 (10): 1000–1003. Bibcode:1987PhRvL..58.1000M. doi:10.1103/PhysRevLett.58.1000. PMID 10034306.81.O. V. Misochko, J. Hu, K. G. Nakamura, "Controlling phonon squeezing and correlation via one- and two-phonon interference," [1011.2001] Controlling phonon squeezing and correlation via one- and two-phonon interference82.Ma, Jian; Wang, Xiaoguang; Sun, C.P.; Nori, Franco (December 2011). "Quantum spin squeezing". Physics Reports. 509 (2–3): 89–165. arXiv:1011.2978 Freely accessible. Bibcode:2011PhR...509...89M. doi:10.1016/j.physrep.2011.08.003.83.Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A. (11 January 2016). "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms". Nature. 529: 505–8. Bibcode:2016Natur.529..505H. doi:10.1038/nature16176. PMID 26751056.84.Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K. (4 March 2016). "Deterministic Squeezed States with Collective Measurements and Feedback". Physical Review Letters. 116 (9): 093602. arXiv:1512.02150 Freely accessible. Bibcode:2016PhRvL.116i3602C. doi:10.1103/PhysRevLett.116.093602. PMID 26991175.85.Bohnet, J. G.; Cox, K. C.; Norcia, M. A.; Weiner, J. M.; Chen, Z.; Thompson, J. K. (13 July 2014). "Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit". Nature Photonics. 8 (9): 731–736. arXiv:1310.3177 Freely accessible. Bibcode:2014NaPho...8..731B. doi:10.1038/nphoton.2014.151.86.Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (17 April 2014). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters. 112 (15): 155304. arXiv:1403.4542 Freely accessible. Bibcode:2014PhRvL.112o5304L. doi:10.1103/PhysRevLett.112.155304. PMID 24785048.87.Rini, Matteo (September 6, 2016). "Synopsis: A Tight Squeeze". Physics.88.Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman (2016-09-06). "Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency". Physical Review Letters. 117 (11): 110801. Bibcode:2016PhRvL.117k0801V. doi:10.1103/PhysRevLett.117.110801. PMID 27661673.89.Eberle, Tobias; Steinlechner, Sebastian; Bauchrowitz, Jöran; Händchen, Vitus; Vahlbruch, Henning; Mehmet, Moritz; Müller-Ebhardt, Helge; Schnabel, Roman (22 June 2010). "Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection". Physical Review Letters. 104 (25): 251102. arXiv:1007.0574 Freely accessible. Bibcode:2010PhRvL.104y1102E. doi:10.1103/PhysRevLett.104.251102. PMID 20867358.90.Polzik, E. S. (1992-01-01). "Spectroscopy with squeezed light". Physical Review Letters. 68 (20): 3020–3023. Bibcode:1992PhRvL..68.3020P. doi:10.1103/PhysRevLett.68.3020.91.Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletić, Vladan (25 June 2010). "Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock". Physical Review Letters. 104 (25): 250801. arXiv:1004.1725 Freely accessible. Bibcode:2010PhRvL.104y0801L. doi:10.1103/PhysRevLett.104.250801. PMID 20867356.92.Louchet-Chauvet, Anne; Appel, Jürgen; Renema, Jelmer J; Oblak, Daniel; Kjaergaard, Niels; Polzik, Eugene S (28 June 2010). "Entanglement-assisted atomic clock beyond the projection noise limit". New Journal of Physics. 12 (6): 065032. arXiv:0912.3895 Freely accessible. Bibcode:2010NJPh...12f5032L. doi:10.1088/1367-2630/12/6/065032.93.Kitagawa, Masahiro; Ueda, Masahito (1 June 1993). "Squeezed spin states". Physical Review A. 47 (6): 5138–5143. Bibcode:1993PhRvA..47.5138K. doi:10.1103/PhysRevA.47.5138.94.Braunstein, Samuel L.; van Loock, Peter (29 June 2005). "Quantum information with continuous variables". Reviews of Modern Physics. 77 (2): 513–577. arXiv:quant-ph/0410100 Freely accessible. Bibcode:2005RvMP...77..513B. doi:10.1103/RevModPhys.77.513.95.Furusawa, A. (23 October 1998). "Unconditional Quantum Teleportation". Science. 282 (5389): 706–709. Bibcode:1998Sci...282..706F. doi:10.1126/science.282.5389.706.96.Menicucci, Nicolas C.; Flammia, Steven T.; Pfister, Olivier (22 September 2008). "One-Way Quantum Computing in the Optical Frequency Comb". Physical Review Letters. 101 (13): 13501. arXiv:0804.4468 Freely accessible. Bibcode:2008PhRvL.101m0501M. doi:10.1103/PhysRevLett.101.130501. PMID 18851426.97.Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters. 84: 1–5. arXiv:quant-ph/9903047 Freely accessible. Bibcode:2000PhRvL..84....1K. doi:10.1103/PhysRevLett.84.1.98.Ionicioiu, R.; Terno, D. R. (2011). "Proposal for a quantum delayed-choice experiment". Phys. Rev. Lett. 107 (23): 230406. arXiv:1103.0117 Freely accessible. Bibcode:2011PhRvL.107w0406I. doi:10.1103/physrevlett.107.230406. PMID 22182073.99.Jump up ^ Greene, Brian (2004). The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Alfred A. Knopf. p. 198. ISBN 0-375-41288-3.100.Octavio Obreg´on, Superstatistics and Gravitation, Entropy 2010, 12, 2067-2076; doi:10.3390/e12092067101.Verlinde, E.P. On the origin of gravity and the laws of Newton. arXiv 2010, 1001.0785.102.Beckenstein, Black Holes and Entropy, Phy Rev D 7(8) 15April 1973103.Y Wang, J M Kratochvil, A Linde, and M Shmakova, Current Observational Constraints on Cosmic Doomsday. JCAP 0412 (2004) 006, astro-ph/0409264104.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955105.Heisenberg, W. (1927), "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", Zeitschrift für Physik (in German), 43 (3–4): 172–198, Bibcode:1927ZPhy...43..172H, doi:10.1007/BF01397280.. Annotated pre-publication proof sheet of Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, March 21, 1927.106.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955107.Daniel M. Greenberger, Conceptual Problems Related to Time and Mass in Quantum Theory, Dept. of Physics, CCNY, New York, NY, 10031,USA. Sep 2010108.V. Bargmann, Ann. Math. 59, 1(1954).109.Roberto Colella, Albert W. Overhauser, Samuel A. Werner. “Observation of Gravitationally Induced Quantum Interference”, Physical Review Letters, 34, 1472 (1975). Abstract.110.Magdalena Zych, Fabio Costa, Igor Pikovski, Časlav Brukner. “Quantum interferometric visibility as a witness of general relativistic proper time”, Nature Communications, 2, 505 (2011). Abstract. 2Physics Article.111.Yair Margalit, Zhifan Zhou, Shimon Machluf, Daniel Rohrlich, Yonathan Japha, Ron Folman. “A self-interfering clock as a 'which path' witness”, published online in 'Science Express' (August 6, 2015). Abstract. 2Physics Article.112.Igor Pikovski, Magdalena Zych, Fabio Costa, Časlav Brukner, “Universal decoherence due to gravitational time dilation”, Nature Physics ,11, 668-672 (2015). Abstract.113.Max Born, "Einstein's Theory of Relativity," Dover, 1962, pp. 318-320114.Carsten Robens, Wolfgang Alt, Dieter Meschede, Clive Emary, and Andrea Alberti, “Ideal Negative Measurements in Quantum Walks Disprove Theories Based on Classical Trajectories,” Phys. Rev. X 5, 011003 (2015)115.A. J. Leggett and A. Garg, “Quantum Mechanics Versus Macroscopic Realism: Is the Flux There When Nobody Looks?,” Phys. Rev. Lett. 54, 857 (1985)116.C. Emary, N. Lambert, and F. Nori, “Leggett-Garg Inequalities,” Rep. Prog. Phys. 77, 016001 (2014)117.M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G. White, and G. J. Pryde, “Violation of the Leggett-Garg Inequality with Weak Measurements of Photons,” Proc. Natl. Acad. Sci. 108, 1256 (2011)118.G. C. Knee et al., “Violation of a Leggett-Garg Inequality with Ideal Non-Invasive Measurements,” Nature Commun. 3, 606 (2012)119.G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a Temporal Bell Inequality for Single Spins in a Diamond Defect Center,” Phys. Rev. Lett. 107, 090401 (2011)120.A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, “Experimental Violation of a Bell’s Inequality in Time with Weak Measurement,” Nature Phys. 6, 442 (2010)121.S. Nimmrichter and K. Hornberger, “Macroscopicity of Mechanical Quantum Superposition States,” Phys. Rev. Lett. 110, 160403 (2013)122.K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackermüller, S. Nimmrichter, I. V. Goldt, O. Boltalina, and M. Arndt, “Theory and Experimental Verification of Kapitza–Dirac–Talbot–Lau Interferometry,” New J. Phys. 11, 043032 (2009)123.Pound, R. V.; Rebka Jr. G. A. (November 1, 1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (9): 439–441. Bibcode:1959PhRvL...3..439P. doi:10.1103/PhysRevLett.3.439.124.Cf. Misner, Thorne & Wheeler 1973, §20.4 (‘Gravitation’)125.Physics for Scientists and Engineers, Volume 2, page 1073 - Lawrence S. Lerner - Science – 1997126.McGlinn, William D. (2004), Introduction to relativity, JHU Press, p. 43, ISBN 0-8018-7047-X Extract of page 43127.E. F. Taylor; J. A. Wheeler (1992), Spacetime Physics, second edition, New York: W.H. Freeman and Company, pp. 248–249, ISBN 0-7167-2327-1128.L. B. Okun', The concept of mass (mass, energy, relativity), Institute of Theoretical and Experimental Physics, Moscow Usp.Fiz.Nauk 158, 511-530 (July 1989)129.Erik Verlinde, On the Origin of Gravity and the Laws of Newton; arXiv:1001.0785v1 [hep-th] 6 Jan 2010130.Rees, Martin (May 3, 2001). Just Six Numbers: The Deep Forces That Shape The Universe. New York, NY: Basic Books; First American edition. p. 4.131.Gribbin. J and Rees. M, Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology p. 7, 269, 1989, ISBN 0-553-34740-3132.Davis, Paul (2007). Cosmic Jackpot: Why Our Universe Is Just Right for Life. New York, NY: Orion Publications. p. 2. ISBN 0618592261.133.Stephen Hawking, 1988. A Brief History of Time, Bantam Books, ISBN 0-553-05340-X, p. 7, 125.134.Lawrence Joseph Henderson, The fitness of the environment: an inquiry into the biological significance of the properties of matter The Macmillan Company, 1913135.R. H. Dicke (1961). "Dirac's Cosmology and Mach's Principle". Nature. 192 (4801): 440–441. Bibcode:1961Natur.192..440D. doi:10.1038/192440a0.136.Heilbron, J. L. The Oxford guide to the history of physics and astronomy, Volume 10 2005, p. 8137.Profile of Fred Hoyle at OPT Archived 2012-04-06 at the Wayback Machine.. Telescopes, Astronomy Cameras, Telescope Mounts & Accessories. Retrieved on 2013-03-11.138.Paul Davies, 1993. The Accidental Universe, Cambridge University Press, p70-71139.MacDonald, J.; Mullan, D. J. (2009). "Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle". Physical Review D. 80 (4): 043507. arXiv:0904.1807 Freely accessible. Bibcode:2009PhRvD..80d3507M. doi:10.1103/physrevd.80.043507.140.Abbott, Larry (1991). "The Mystery of the Cosmological Constant". Scientific American. 3 (1): 78.141.Lemley, Brad. "Why is There Life?". Discover magazine. Retrieved 23 August 2014.142.Adams, Fred C., 2008, “Stars in other universes: stellar structure with different fundamental constants”, Journal of Cosmology and Astroparticle Physics, 08: 10. doi:10.1088/1475-7516/2008/08/010143.Barnes, Luke A., 2012, “The fine-tuning of the universe for intelligent life”, Publications of the Astronomical Society of Australia, 29(4): 529–564. doi:10.1071/AS12015144.Carter, B., 1974, “Large number coincidences and the anthropic principle in cosmology”, in M. S. Longair (ed.), Confrontation of Cosmological Theory with Observational Data, Dordrecht: Reidel, pp. 291–298.145.Collins, R., 2009, “The teleological argument: an exploration of the fine-tuning of the cosmos”, in W. L. Craig and J.P. Moreland (eds.), The Blackwell Companion to Natural Theology, Oxford: Blackwell146.Colyvan M., J. L. Garfield, and G. Priest, 2005, “Problems with the argument from fine-tuning”, Synthese, 145(39): 325–338. doi:10.1007/s11229-005-6195-0147.Donoghue, John F., 2007, “The fine-tuning problems of particle physics and anthropic mechanisms”, in Carr 2007: 231–246. doi:10.1017/CBO9781107050990.017148.Earman, John and Jesus Mosterín, 1999, “A critical look at inflationary cosmology”, Philosophy of Science, 66(1): 1–49. doi:10.1086/392675149.Grinbaum, Alexei, 2012, “Which fine-tuning arguments are fine?”,, Foundations of Physics, 42(5): 615–631. doi:10.1007/s10701-012-9629-9150.Hogan, Craig J., 2000, “Why the universe is just so”, Reviews of Modern Physics, 72: 1149–1161. doi:10.1103/RevModPhys.72.1149151.Landsman, Klaas, 2016, “The fine-tuning argument: exploring the improbability of our own existence”, in K. Landsman and E. van Wolde (eds.), The Challenge of Chance, Heidelberg: Springer152.McCoy, C.D., 2015, “Does inflation solve the hot big bang model’s fine-tuning problems?”, Studies in History and Philosophy of Modern Physics, 51: 23–36. doi:10.1016/j.shpsb.2015.06.002153.Roberts, John T., 2012, “Fine-tuning and the infrared bull’s eye”, Philosophical Studies, 160(2): 287–303. doi:10.1007/s11098-011-9719-0154.Tegmark, Max, 2014, Our Mathematical Universe: My Quest for the Ultimate Nature of Reality, New York: Knopf.155.Tegmark, Max and Martin J. Rees, 1998, “Why is the cosmic microwave background fluctuation level 10−510−5”, The Astrophysical Journal, 499(2): 526–532. doi:10.1086/305673156.Tegmark, Max, Anthony Aguirre, Martin J. Rees, and Frank Wilczek, 2006, “Dimensionless constants, cosmology, and other dark matters”, Physical Review D, 73(2): 023505. doi:10.1103/PhysRevD.73.023505157.Wheeler, J. A. (January 1955). "Geons". Physical Review. 97 (2): 511. Bibcode:1955PhRv...97..511W. doi:10.1103/PhysRev.97.511.158.J S Briggs 2008 J. Phys.: Conf. Ser. 99 012002, A derivation of the time-energy uncertainty relation.159.Jan Hilgevoord, The uncertainty principle for energy and time, Department of History and Foundations of Mathematics and Science, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands, (Received 29 January 1996; accepted 10 June 1996)160.L. MANDELSTAM * and lg. TAMM, THE UNCERTAINTY RELATION BETWEEN ENERGY AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS, Academy of Scioences of the USSR, 1945.161.J. A. Wheeler and R. P., Feynman, “Interaction with the absorber as a mechanism of radiation”, Rev.Mod. Phys. 17 157 (1945).162.J. E. Hogarth, “ Considerations of the Absorber Theory of Radiation”, Proc. Roy. Soc. A267,163.pp365-383 (1962).164.Cramer, John G. (July 1986). "The Transactional Interpretation of Quantum Mechanics". Reviews of Modern Physics. 58 (3): 647–688. Bibcode:1986RvMP...58..647C. doi:10.1103/RevModPhys.58.647.165.Cramer, John G. (February 1988). "An Overview of the Transactional Interpretation" (PDF). International Journal of Theoretical Physics. 27 (2): 227–236. Bibcode:1988IJTP...27..227C. doi:10.1007/BF00670751.166.Cramer, John G. (3 April 2010). "Quantum Entanglement, Nonlocality, Back-in-Time Messages" (PPT). John G. Cramer's Home Page. University of Washington.167.Cramer, John G. (2016). The Quantum Handshake: Entanglement, Nonlocality and Transactions. Springer Science+Business Media. ISBN 978-3319246406.168.Richard Feynman: A life in science, p.273 et seq., John Gribbin, Mary Gribbin, Dutton, Penguin Books, 1997169.M. C. Fischer, B. Guti´errez-Medina, and M. G. Raizen, Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (February 1, 2008)170.Sudarshan, E.C.G.; Misra, B. (1977). "The Zeno's paradox in quantum theory". Journal of Mathematical Physics 18 (4): 756–763.171.T. Nakanishi, K. Yamane, and M. Kitano: Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping Phys. Rev. A 65, 013404 (2001).172.P. Facchi, D. A. Lidar, & S. Pascazio Unification of dynamical decoupling and the quantum Zeno effect Physical Review A 69, 032314 (2004)173.UNIFORM DETERMINATION OF DEATH ACT , Perspectives on Death and Dying 5th Edition, An Online Textbook edited by Dr. Philip A. Pecorino.174.Dr. Leon Kass, in "A Statutory Definition of the Standards for Determining Human Death: An Appraisal and a Proposal," 121 Pa. L. Rev. 87. 1975175.§1. [Determination of Death.] An individual who has sustain ­either (1) irreversible cessation of circulator and respiratory­functions, or (2) irreversible cessation of all functionsof the entire brain, including the brain stem, are dead. A determination of death must be made in accordance with ­accepted medical standards.176.§2. [Uniformity of Construction and Application.] This Act shall be applied and construed to effectuate its general purpose to make uniform the law with respect to the subject of this Act among states enacting it.177.§3. [Short Title.] This Act may be cited as the Uniform Determination of Death Act.178.Capron, A. M. and Kass, L. R. "A Statutory Definition of the Standards for Determining Human Death" University of Pennsylvania Law Review 121:87-118, 1972.179.Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters. 84: 1–5. arXiv:quant-ph/9903047 Freely accessible. Bibcode:2000PhRvL..84....1K. doi:10.1103/PhysRevLett.84.1.180.Scully, Marlan O.; Kai Drühl (1982). "Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics". Physical Review A. 25 (4): 2208–2213. Bibcode:1982PhRvA..25.2208S. doi:10.1103/PhysRevA.25.2208.181.Ma, Zeilinger, et al., "Quantum erasure with causally disconnected choice". See: Quantum erasure with causally disconnected choice "Our results demonstrate that the viewpoint that the system photon behaves either definitely as a wave or definitely as a particle would require faster-than-light communication. Because this would be in strong tension with the special theory of relativity, we believe that such a viewpoint should be given up entirely."182.Peruzzo, et al., "A quantum delayed choice experiment", arXiv:1205.4926v2 [quant-ph] 28 Jun 2012. This experiment uses Bell inequalities to replace the delayed choice devices, but it achieves the same experimental purpose in an elegant and convincing way.183.Zajonc, A. G.; Wang, L. J.; Zou, X. Y.; Mandel, L. (1991). "Quantum eraser". Nature. 353 (6344): 507–508. Bibcode:1991Natur.353..507Z. doi:10.1038/353507b0.184.Herzog, T. J.; Kwiat, P. G.; Weinfurter, H.; Zeilinger, A. (1995). "Complementarity and the quantum eraser" (PDF). Physical Review Letters. 75 (17): 3034–3037. Bibcode:1995PhRvL..75.3034H. doi:10.1103/PhysRevLett.75.3034. PMID 10059478. Archived from the original (PDF) on 24 December 2013. Retrieved 13 February 2014.185.Walborn, S. P.; et al. (2002). "Double-Slit Quantum Eraser". Phys. Rev. A. 65 (3): 033818. arXiv:quant-ph/0106078 Freely accessible. Bibcode:2002PhRvA..65c3818W. doi:10.1103/PhysRevA.65.033818.186.Jacques, Vincent; Wu, E; Grosshans, Frédéric; Treussart, François; Grangier, Philippe; Aspect, Alain; Rochl, Jean-François (2007). "Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment". Science. 315 (5814): 966–968. arXiv:quant-ph/0610241 Freely accessible. Bibcode:2007Sci...315..966J. doi:10.1126/science.1136303. PMID 17303748.187.Chiao, R. Y.; P. G. Kwiat; Steinberg, A. M. (1995). "Quantum non-locality in two-photon experiments at Berkeley". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B. 7 (3): 259–278. arXiv:quant-ph/9501016 Freely accessible. Bibcode:1995QuSOp...7..259C. doi:10.1088/1355-5111/7/3/006. Retrieved 13 February 2014.188.Jordan, T. F. (1993). "Disppearance and reappearance of macroscopic quantum interference". Physical Review A. 48 (3): 2449–2450. Bibcode:1993PhRvA..48.2449J. doi:10.1103/PhysRevA.48.2449.189.Peruzzo, Alberto; Shadbolt, Peter J.; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L. (2012). "A quantum delayed choice experiment". Science. 338 (6107): 634–637. arXiv:1205.4926 Freely accessible. Bibcode:2012Sci...338..634P. doi:10.1126/science.1226719. PMID 23118183.190.Eberhard, Phillippe H.; Ronald R. Ross (1989). "Quantum field theory cannot provide faster-than-light communication". Foundations of Physics Letters. 2 (2): 127–149. Bibcode:1989FoPhL...2..127E. doi:10.1007/BF00696109.191.Benoit B. Mandelbrot, Fractals, Encyclopedia of Statiscal Sciences, DOI: 10.1002/0471667196.ess0816 1977192.John Archibald Wheeler, Geons, Phys. Rev. 97, 511 – Published 15 January 1955193.Misner, Thorne, Zurek; John Wheeler, relativity, and quantum information, http://its.caltech.edu/kip/pubsc...194.Bondi, H, Relativity and Common Sense 1980 ISBN-13: 978-0486240213195.Kennard, E. H. (1927), "Zur Quantenmechanik einfacher Bewegungstypen", Zeitschrift für Physik (in German), 44 (4–5): 326–352, Bibcode:1927ZPhy...44..326K, doi:10.1007/BF01391200.

People Like Us

One of the best products out there. I used it to present my android application to my viva team. They really liked it. The screen share quality was amazing with no lag!

Justin Miller