Bt 1: Fill & Download for Free

GET FORM

Download the form

How to Edit The Bt 1 and make a signature Online

Start on editing, signing and sharing your Bt 1 online following these easy steps:

  • click the Get Form or Get Form Now button on the current page to make access to the PDF editor.
  • hold on a second before the Bt 1 is loaded
  • Use the tools in the top toolbar to edit the file, and the edits will be saved automatically
  • Download your modified file.
Get Form

Download the form

A top-rated Tool to Edit and Sign the Bt 1

Start editing a Bt 1 in a minute

Get Form

Download the form

A clear tutorial on editing Bt 1 Online

It has become very simple lately to edit your PDF files online, and CocoDoc is the best online PDF editor you have ever seen to make changes to your file and save it. Follow our simple tutorial to try it!

  • Click the Get Form or Get Form Now button on the current page to start modifying your PDF
  • Add, modify or erase your text using the editing tools on the tool pane on the top.
  • Affter editing your content, put on the date and create a signature to complete it perfectly.
  • Go over it agian your form before you click to download it

How to add a signature on your Bt 1

Though most people are in the habit of signing paper documents using a pen, electronic signatures are becoming more popular, follow these steps to sign documents online!

  • Click the Get Form or Get Form Now button to begin editing on Bt 1 in CocoDoc PDF editor.
  • Click on the Sign icon in the toolbar on the top
  • A box will pop up, click Add new signature button and you'll have three options—Type, Draw, and Upload. Once you're done, click the Save button.
  • Move and settle the signature inside your PDF file

How to add a textbox on your Bt 1

If you have the need to add a text box on your PDF so you can customize your special content, take a few easy steps to carry it out.

  • Open the PDF file in CocoDoc PDF editor.
  • Click Text Box on the top toolbar and move your mouse to carry it wherever you want to put it.
  • Fill in the content you need to insert. After you’ve inserted the text, you can take full use of the text editing tools to resize, color or bold the text.
  • When you're done, click OK to save it. If you’re not settle for the text, click on the trash can icon to delete it and start afresh.

An easy guide to Edit Your Bt 1 on G Suite

If you are seeking a solution for PDF editing on G suite, CocoDoc PDF editor is a recommendable tool that can be used directly from Google Drive to create or edit files.

  • Find CocoDoc PDF editor and install the add-on for google drive.
  • Right-click on a chosen file in your Google Drive and select Open With.
  • Select CocoDoc PDF on the popup list to open your file with and allow CocoDoc to access your google account.
  • Make changes to PDF files, adding text, images, editing existing text, annotate in highlight, trim up the text in CocoDoc PDF editor before saving and downloading it.

PDF Editor FAQ

What are the 5 scariest droids in Star Wars legends?

This automatically destroys you answers. 0-0-0 droid and BT-1.BT-1 is armed to the teeth with weapons.0–0–0 is the ultimate interrogation droid. he literally “accidentally” killed someone while interrogating them.BT-1 with all extensions(ecxept the rocket launcher. theres supposed to be rocket launcher. and i WANT IT BACK)but(t) then again, HK-47,a jedi assassin droid, made by darth revan, might as well snipe them from a cliff and wipe them from the face of galaxy.

What could kill us so quickly that we wouldn't even notice?

Botulinum Toxin. I have fibromyalgia. In the early 90s, physicians were doing test studies using the toxin, calling it BT-1. I used to joke and say I would be BaTman if I was able to get the treatment. Never happened, the research went to a different part of the medical community. Plastic/cosmetic surgery. BT-1 is injected with a needle, but a drop of it on your tongue could kill you instantly. BT-1 is botulism, a plague. BT-1 is also now called...Botox.

How do I integrate [math]\displaystyle\int\limits_{\scriptsize0}^{\scriptsize a}\frac{\ln(x^{\scriptsize2}+a^{\scriptsize2})}{x+a}dx[/math]?

We want to evaluate the integral (where [math]a > 0[/math])[math]I(a) = \displaystyle \int_0^a \frac{\ln(x^2 + a^2)}{x + a} \, dx. \tag*{}[/math]To this end, we first let [math]x = at[/math]:[math]\begin{align*} I(a) &= \displaystyle \int_0^1 \frac{\ln(a^2(t^2 + 1))}{a(t + [/math][math]1[/math][math])} \cdot a \, dt\\ &= \displaystyle \int_0^1 \frac{2\ln{a} + \ln(t^2 + 1)}{t + [/math][math]1[/math][math]} \, dt\\ &= \displaystyle 2\ln{a} \ln(t + [/math][math]1[/math][math]) \Bigg|_0^1 + \int_0^1 \frac{\ln(t^2 + 1)}{t + [/math][math]1[/math][math]} \, dt\\ &= \displaystyle 2\ln{a} \ln{2} + \int_0^1 \frac{\ln(t^2 + 1)}{t + [/math][math]1[/math][math]} \, dt. \end{align*} \tag*{}[/math]Now, we need to evaluate[math]\displaystyle \int_0^1 \frac{\ln(t^2 + 1)}{t + [/math][math]1[/math][math]} \, dt. \tag*{}[/math]In order to do this, we start by using integration by parts with [math]u = \ln(t^2 + [/math][math]1[/math][math])[/math] and [math]dv = \frac{dt}{t + [/math][math]1[/math][math]}[/math]:[math]\begin{align*} \displaystyle \int_0^1 \frac{\ln(t^2 + 1)}{t + [/math][math]1[/math][math]} \, dt &= \ln(t^2 + [/math][math]1[/math][math]) \ln(t + [/math][math]1[/math][math]) \Bigg|_0^1 - 2\int_0^1 \frac{t \ln(t + 1)}{t^2 + [/math][math]1[/math][math]} \, dt\\ &= \displaystyle \ln^2{2} - 2\int_0^1 \frac{t \ln(t + 1)}{t^2 + [/math][math]1[/math][math]} \, dt. \end{align*} \tag*{}[/math]For the remaining integral, we (now) use a parameter and consider[math]\displaystyle J(b) = \int_0^1 \frac{t \ln(bt + 1)}{t^2 + [/math][math]1[/math][math]} \, dt. \tag*{}[/math]Note that we want the value of this integral when [math]b = [/math][math]1[/math][math][/math].Differentiating both sides with respect to [math]b[/math] yields[math]\begin{align*} J'(b) &= \displaystyle \int_0^1 \frac{\partial}{\partial b} \frac{t \ln(bt + 1)}{t^2 + [/math][math]1[/math][math]} \, dt\\ &= \displaystyle \int_0^1 \frac{t^2}{(bt + 1)(t^2 + [/math][math]1[/math][math])} \, dt\\ &= \displaystyle \frac{1}{b^2 + [/math][math]1[/math][math]} \int_0^1 \Big(\frac{1}{bt + [/math][math]1[/math][math]} + \frac{bt - 1}{t^2 + 1}\Big) \, dt, \text{ by partial fractions}\\ &= \displaystyle \frac{1}{b^2 + [/math][math]1[/math][math]} \Big(\frac{1}{b} \ln(bt + [/math][math]1[/math][math]) + \frac{b}{2} \ln(t^2 + [/math][math]1[/math][math]) - \arctan{t}\Big) \Bigg|_0^1\\ &= \displaystyle \frac{\ln(b + 1)}{b(b^2 + [/math][math]1[/math][math])} + \frac{\ln{2}}{2} \cdot \frac{b}{b^2 + [/math][math]1[/math][math]} - \frac{\pi}{4} \cdot \frac{1}{b^2 + [/math][math]1[/math][math]}. \end{align*} \tag*{}[/math]For the integral we want, now we integrate both sides from 0 to 1:[math]\begin{align*} J(1) &= \displaystyle \int_0^1 \Big(\frac{\ln(b + 1)}{b(b^2 + [/math][math]1[/math][math])} + \frac{\ln{2}}{2} \cdot \frac{b}{b^2 + [/math][math]1[/math][math]} - \frac{\pi}{4} \cdot \frac{1}{b^2 + 1}\Big) \, db\\ &= \displaystyle \int_0^1 \Big(\frac{\ln(b + 1)}{b} - \frac{b \ln(b + 1)}{b^2 + [/math][math]1[/math][math]} + \frac{\ln{2}}{2} \cdot \frac{b}{b^2 + [/math][math]1[/math][math]} - \frac{\pi}{4} \cdot \frac{1}{b^2 + 1}\Big) \, db\\ &= \displaystyle \int_0^1 \frac{\ln(b + 1)}{b} \, db - J(1) + \frac{\ln^2{2}}{4} - \frac{\pi^2}{16}. \end{align*} \tag*{}[/math]Solving for [math]J(1)[/math] gives us[math]J(1) = \displaystyle \frac{1}{2} \int_0^1 \frac{\ln(b + 1)}{b} \, db + \frac{\ln^2{2}}{8} - \frac{\pi^2}{32}. \tag*{}[/math]In order to evaluate the remaining integral, we use the Maclaurin series for [math]\ln(x+1)[/math] and obtain[math]\begin{align*} \displaystyle \int_0^1 \frac{\ln(b + 1)}{b} \, db &= \displaystyle \int_0^1 \frac{1}{b} \Big(\sum_{k=1}^{\infty} (-1)^{k-1} \frac{b^k}{k}\Big) \, db\\ &= \displaystyle \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \int_0^1 b^{k-1} \, db\\ &= \displaystyle \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2}\\ &= \displaystyle \sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{2}{(2k)^2}\\ &= \displaystyle \Big(1 - \frac{2}{2^2}\Big) \sum_{k=1}^{\infty} \frac{1}{k^2}\\ &= \displaystyle \frac{1}{2} \cdot \frac{\pi^2}{6}\\ &= \displaystyle \frac{\pi^2}{12}. \end{align*} \tag*{}[/math]Therefore, we have found that[math]J(1) = \displaystyle \int_0^1 \frac{t \ln(t + 1)}{t^2 + [/math][math]1[/math][math]} \, dt = \frac{1}{2} \cdot \frac{\pi^2}{12} + \frac{\ln^2{2}}{8} - \frac{\pi^2}{32} = \frac{\pi^2}{96} + \frac{\ln^2{2}}{8}. \tag*{}[/math]Putting this all together, we obtain[math]I(a) = \displaystyle 2 \ln{a} \ln{2} + \ln^2{2} - 2\Big( \frac{\pi^2}{96} + \frac{\ln^2{2}}{8} \Big) = 2 \ln{a} \ln{2} + \frac{3}{4} \ln^2{2} - \frac{\pi^2}{48}. \tag*{}[/math]In other words, we conclude that[math]\displaystyle \int_0^a \frac{\ln(x^2 + a^2)}{x + a} \, dx = 2 \ln{a} \ln{2} + \frac{3}{4} \ln^2{2} - \frac{\pi^2}{48}. \tag*{}[/math]

Comments from Our Customers

I love CocoDoc because it provides me with a wealth of real life uploaded document references for any design I may be trying to mimic.

Justin Miller